
A STOCHASTIC PROGRAMMING APPROACH TO THE SINGLE MACHINE

MAKESPAN PROBLEM WITH RANDOM BREAKDOWNS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

TARIK GÜREL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

INDUSTRIAL ENGINEERING

DECEMBER 2022

Approval of the thesis:

A STOCHASTIC PROGRAMMING APPROACH TO THE SINGLE

MACHINE MAKESPAN PROBLEM WITH RANDOM BREAKDOWNS

submitted by TARIK GÜREL in partial fulfillment of the requirements for the

degree of Master of Science in Industrial Engineering, Middle East Technical

University by,

Prof. Dr. Halil Kalıpçılar

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Esra Karasakal

Head of the Department, Industrial Engineering

Prof. Dr. Meral Azizoğlu

Supervisor, Industrial Engineering, METU

Assist. Prof. Dr. Sakine Batun

Co-Supervisor, Industrial Engineering, METU

Examining Committee Members:

Prof. Dr. Serhan Duran

Industrial Engineering, METU

Prof. Dr. Meral Azizoğlu

Industrial Engineering, METU

Assist. Prof. Dr. Sakine Batun

Industrial Engineering, METU

Assoc. Prof. Dr. Melih Çelik

Business Administration, University of Bath.

Assoc. Prof. Dr. Özlem Karsu

Industrial Engineering, Bilkent University

Date: 02.12.2022

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name Last name : Tarık Gürel

Signature :

v

ABSTRACT

A STOCHASTIC PROGRAMMING APPROACH TO THE SINGLE

MACHINE MAKESPAN PROBLEM WITH RANDOM BREAKDOWNS

Gürel, Tarık

Master of Science, Industrial Engineering

Supervisor : Prof. Dr. Meral Azizoğlu

Co-Supervisor: Assist. Prof. Dr. Sakine Batun

December 2022, 67 pages

In this thesis, we consider a single machine scheduling problem with random

breakdowns. There is a single breakdown whose occurrence times follow a discrete

distribution with known probabilities. We aim to minimize the expected makespan

and propose a stochastic programming approach.

We propose two stage stochastic programming models and a branch and bound

algorithm. We enhance the performance of the branch and bound algorithm with an

efficient branching scheme and powerful lower bounds.

The results of our computational experiments have shown that the stochastic

programming models can solve small-sized instances and the branch and bound

algorithm is capable of solving medium sized instances in reasonable times.

Keywords: Single Machine Sequencing, Makespan, Stochastic Programming

Models, Branch and Bound Algorithm, Random Breakdown

vi

ÖZ

STOKASTİK PROGRAMLAMA YAKLAŞIMI İLE RASSAL ARIZA

ETKİSİNDE TEK MAKİNE ÇİZELGELEME

Gürel, Tarık

Yüksek Lisans, Endüstri Mühendisliği

Tez Yöneticisi: Prof. Dr. Meral Azizoğlu

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi Sakine Batun

Aralık 2022, 67 sayfa

Bu tezde, rassal arıza varlığında tek makinenin çizelgeleme problemini ele

almaktayız. Gerçekleşme zamanı bilinen olasılık altında ayrık dağılım özelliği

gösteren bir arıza mevcuttur. Beklenen son işin tamamlanma süresini azaltmayı

amaçlamaktayız ve bunun için stokastik programlamı yaklaşımı önermekteyiz.

Belirtilen amaç doğrultusunda iki seviyeli stokastik programlama modelleri ve

dal/sınır algoritması önermekteyiz. Etkili dallanma planı ve güçlü alt sınırlar ile

dal/sınır algoritmasının performansını arttırmaktayız.

Hesaplamalarımızın sonuçları stokastik programlama modellerimizn küçük ölçekli

problemlerde, dal-sınır algoritmasının ise orta ve büyük ölçekli problemlerde

makul sürelerde çalıştığını göstermiştir.

Anahtar Kelimeler: Tek Makine Sıralaması, Son İş Tamamlanma Süresi, Stokastik

Programlama Modelleri, Dal-Sınır Algoritması, Rassal Arıza

vii

To my family and friends…

viii

ACKNOWLEDGMENTS

Firstly, I would like to express my deepest gratitude to my supervisor Prof. Dr.

Meral Azizoğlu and co-supervisor Assist. Prof. Dr. Sakine Batun for their

invaluable assistance, encouragement, patience and endless support. I am

extremely grateful and happy to work together.

I would like to thank jury members for their valuable comments on the thesis and

positive attitudes during my thesis defense.

I would like to present my special thanks to my family. I am indebted to my

family’s unconditional and loving support. They are always with me throughout

not only this thesis but also my whole life.

I am also thankful to my company, ASELSAN, for its support during my study.

Lastly, very special thanks to my friends. They always support and motivate me

during my journey.

ix

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ .. vi

ACKNOWLEDGMENTS ... viii

TABLE OF CONTENTS ... ix

LIST OF TABLES ... xi

LIST OF FIGURES ... xiv

CHAPTERS

1 INTRODUCTION .. 1

2 LITERATURE REVIEW ... 5

2.1 Maintenance Studies... 5

2.1.1 Deterministic Maintenance ... 6

2.1.2 Stochastic Maintenance... 7

2.2 Stochastic Programming for Machine Scheduling Problems 8

3 PROBLEM DEFINITION AND FORMULATION 11

3.1 Problem Description ... 11

3.2 Stochastic Programming (SP) Basics ... 12

3.3 Stochastic Programming Models.. 13

3.3.1 Precedence Based Mixed Integer Linear Program 13

3.3.2 Position Based Mixed Integer Linear Program 16

3.4 An Example .. 17

3.5 Expected Value Problem and the Value of the Stochastic Solution......... 19

3.6 An Example .. 21

x

4 BRANCH & BOUND METHOD ... 25

4.1 Basics of Branch and Bound Method ... 25

4.2 Proposed Branch and Bound Algorithm ... 26

4.3 Bounding Mechanisms ... 28

5 COMPUTATIONAL EXPERIMENTS .. 37

5.1 Data Generation .. 37

5.2 Performance Measures .. 39

5.3 Analysis of the Results ... 39

5.3.1 Stochastic Programming .. 40

5.3.2 Branch & Bound Algorithm .. 42

5.3.3 Expected Value Problem and the Value of the Stochastic Solution .. 59

6 CONCLUSION ... 63

REFERENCES .. 65

xi

LIST OF TABLES

TABLES

Table 3.1 Processing times of jobs in example ...17

Table 3.2 Breakdowns times and probabilities of an example 17

Table 3.3 Proposed schedule that shows the breakdown of scenario 1 18

Table 3.4 Proposed schedule that shows the breakdown of scenario 2 18

Table 3.5 Proposed schedule that shows the breakdown of scenario 3 19

Table 3.6 Output of the knapsack problem .. 21

Table 3.7 Schedule of EV solution for scenario 1 .. 22

Table 3.8 Schedule of EV solution for scenario 2 .. 22

Table 3.9 Schedule of EV solution for scenario 3 .. 22

Table 4.1 Processing time data ... 27

Table 4.2 Breakdown time data .. 27

Table 4.3 Processing time of jobs in example .. 29

Table 4.4 Breakdown time and occurrence probability data 29

Table 4.5 Processing time data for 7-job, 6-scenario example instance 33

Table 4.6 Breakdown time and occurrence probability data for 7-job, 6-scenario

example instance .. 33

Table 5.1 Performances of SP1 and SP2, 𝑝𝑖~𝑈[1,10], n=10................................. 40

Table 5.2 Performances of SP1 and SP2, 𝑝𝑖~𝑈[1,100], n=10...………................ 40

Table 5.3 CPU Times of SP1, 𝑝𝑖~𝑈[1,100]... 41

xii

Table 5.4 Computational Results for the Branch and Bound Algorithm for Set 1,

Plan 1 and 𝑝𝑖 ~𝑈[1,10] …………………………………………………………...42

Table 5.5 Computational Results for the Branch and Bound Algorithm for Set 1,

Plan 2 and 𝑝𝑖 ~𝑈[1,10] …………………………………………………………...42

Table 5.6 Computational Results for the Branch and Bound Algorithm for Set 2,

Plan 1 and 𝑝𝑖 ~𝑈[1,10] …………………………………………………………...43

Table 5.7 Computational Results for the Branch and Bound Algorithm for Set 2,

Plan 2 and 𝑝𝑖 ~𝑈[1,10] …………………………………………………………...43

Table 5.8 Computational Results for the Branch and Bound Algorithm for Set 1,

Plan 1 and 𝑝𝑖 ~𝑈[1,100] .………………………………………………………...43

Table 5.9 Computational Results for the Branch and Bound Algorithm for Set 1,

Plan 2 and 𝑝𝑖 ~𝑈[1,100] .………………………………………………………...44

Table 5.10 Computational Results for the Branch and Bound Algorithm for Set 2,

Plan 1 and 𝑝𝑖 ~𝑈[1,100] .………………………………………………………...44

Table 5.11 Computational Results for the Branch and Bound Algorithm for Set 2,

Plan 2 and 𝑝𝑖 ~𝑈[1,100] .………………………………………………………...44

Table 5.12 Computational Results for the Branch and Bound Algorithm for Set 1,

Plan 1, higher n values and 𝑝𝑖 ~𝑈[1,100] ……………………………..........……46

Table 5.13 Computational Results for the Branch and Bound Algorithm for Set 1,

Plan 2, higher n values and 𝑝𝑖 ~𝑈[1,100] ……………………………..........……46

Table 5.14 Computational Results for the Branch and Bound Algorithm for Set 2,

Plan 1, higher n values and 𝑝𝑖 ~𝑈[1,100] ……………………………..........……46

Table 5.15 Computational Results for the Branch and Bound Algorithm for Set 2,

Plan 2, higher n values and 𝑝𝑖 ~𝑈[1,100] ……………………………..........……47

Table 5.16 Distribution of unsolved instances to specific problem settings 51

xiii

Table 5.17 Results of Performance Measure when LBs are not used for n=10 53

Table 5.18 Results of Performance Measure when LBs are used for n=10 53

Table 5.19 The number of unsolved instances when 𝑝𝑖 ~𝑈[1,10] 54

Table 5.20 The CPU times and number of nodes when 𝑝𝑖 ~𝑈[1,10]..................... 55

Table 5.21 The number of unsolved instances when 𝑝𝑖 ~𝑈[1,100] 56

Table 5.22 The CPU times and number of nodes when 𝑝𝑖 ~𝑈[1,100]................... 56

Table 5.23 Number of instances (first feasible solution = optimal solution) for

different problem settings ... 58

Table 5.24 Deviations for instances that first feasible solution is not equal to

optimal solution .. 58

Table 5.25 EEV-SP values when 𝑝𝑖~𝑈[1,100] for n=10 59

Table 5.26 VSS values for n=50, m=5 and 𝑝𝑖 ~𝑈[1,100] 60

Table 5.27 VSS values for n=100, m=5 and 𝑝𝑖 ~𝑈[1,100].................................... 60

Table 5.28 VSS values for n=50, m=3 and 𝑝𝑖 ~𝑈[1,100]...................................... 61

Table 5.29 VSS values for n=50, m=5 and 𝑝𝑖 ~𝑈[1,10].. 61

xiv

LIST OF FIGURES

FIGURES

Figure 4.1 A partial branching tree .. 26

1

CHAPTER 1

1 INTRODUCTION

In this study, we consider a single machine makespan problem with uncertain

breakdowns. A single machine is an important concern for many manufacturers

who have to operate a single prestigious machine like a robot or a CNC machine.

Moreover, a single machine may represent a collection of many machines or a

bottleneck machine.

The maximum flow time overall jobs, so called makespan, is an important concern

of manufacturing, in particular when all jobs in a lot should wait for each other to

be moved from the operation shop floor. The breakdowns decrease the efficiency

of the manufacturing operations through manufacturing cost increases, quality

deterioration, and makespan increases.

The scheduling theory mostly assumes that the resources are continuously available

to process the operation and there are no breakdowns. This assumption may

contradict the practical applications where the machines are to be maintained at

some defined times once they break down. A former situation is a deterministic

event whereas the latter case is a random event that occurs in stochastic

environments.

Random breakdowns are relatively less studied in stochastic scheduling literature.

The majority of the literature on stochastic scheduling assumes that uncertainty

arises due to the processing times. The studies which deal with breakdowns assume

that the breakdowns are governed by known probability distribution functions and

propose optimal policies to minimize the expected performance measure.

2

Recognizing this gap in the literature, we consider a single breakdown whose

occurrence time follows a discrete distribution with known probabilities. During

the short planning horizon of a scheduling environment, it is realistic to make such

an assumption once a machine breaks down and thereafter maintained, it will not

re-break down till the completion of the last job. We call any occurrence event a

scenario and assume that there are limited scenarios. Each scenario that is defined

by a time point may be representative of the time interval that it is in. We aim to

minimize the expected makespan which is the collection of all makespan values

weighted by their probabilities.

We propose two stochastic programming models one of which is precedence based

and the other is position based. The models are mixed integer linear programs with

a lot of binary variables, hence their applications are limited to small-sized problem

instances. For medium to large-sized problem instances, we propose a branch and

bound algorithm whose efficiency is enhanced by an efficient branching scheme

and powerful lower bounding mechanisms.

To sum up, we contribute to the existing literature in the following two ways:

i. proposing the first stochastic programming model for a scheduling

problem with random breakdowns.

ii. proposing the first optimization approach (branch and bound algorithm)

to a single machine stochastic programming model

The rest of the thesis is organized as follows. In Chapter 2, we review the literature

on deterministic problems with scheduled breakdowns and stochastic problems

with uncertain parameters. In addition, we discuss the stochastic programming

approaches for machine scheduling problems. Chapter 3 defines the problem, gives

the stochastic programming models, and presents the models used to find the value

of the stochastic solution. In Chapter 4, we present the branch and bound algorithm

along with the mechanisms used to enhance its efficiency. Chapter 5 discusses our

3

computational experiments, and we conclude the study in Chapter 6, where the

main conclusions and future research directions are stated.

4

5

CHAPTER 2

2 LITERATURE REVIEW

Throughout the years, there have been many studies about scheduling with

preventive maintenance all over the world and one of the reasons why it can be

such a popular study area is that lots of variants as study topics can be derived by

changing the problem environment. Number of machines, scheduling methods,

maintenance strategies and objectives are examples of what the problem

environment is made up of.

The majority of the studies carried out in the earlier years is related to deterministic

problems. Data corresponding to processing time, breakdown time and so on are

already known, and solution can be found by using the data from existing

algorithms and solution methods. However, this situation does not reflect real life

cases. Particularly in the manufacturing sector, companies regularly face

maintenance activities (corrective maintenance) performed after random

breakdowns. These events have played a vital role in the emerging of studies

focused on stochastic problems.

We first review the maintenance literature and then the stochastic programming

studies for all scheduling environments.

2.1 Maintenance Studies

We review the maintenance literature under two headings: deterministic and

stochastic maintenance

6

2.1.1 Deterministic Maintenance

Chen (2009) carried out study about a single-machine scheduling problem with

periodic maintenance where objective is minimizing number of tardy jobs. There

were several maintenance periods in which an amount of time was required for the

performance. In the lights of these information, Chen (2009) studied how to

schedule for jobs and maintenance period. A heuristic algorithm based on Moore-

Hodgson’s algorithm was developed to obtain near-optimal schedule. To decide

whether the developed heuristic well performed or not, branch and bound method

also implemented and comparison was made. Liu et al. (2015) addressed the same

problem that has been studied by Chen (2009). They suggested an improved branch

and bound algorithm that involves new effective dominance rules and strong lower

bounds. Low et al. (2010) dealt with single machine scheduling problem under the

deterministic environment aiming to minimize the makespan. Machine is not

available at all time due to periodic maintenance activities scheduled after a

periodic time interval. They focused on heuristic methods to solve NP-hard

problem, and decreasing order with first fit, one of the proposed heuristics,

performed well according to computational results. Chen et al. (2020) also

considered single machine scheduling problem with preventative maintenance to

minimize the makespan in which jobs were non-resumable, and maintenance

intervals were flexible. They tried to solve this problem by utilizing from mixed-

integer programming models (MIP) and branch and bound method (B&B) initially.

They concluded that these methods were satisfactory for the small size problems,

and B&B heavily dominated the MIP. Then, four different heuristics were designed

to reach near-optimal solution quickly for the large size problem. The result of their

experiments revealed the satisfactory performance of heuristics, especially

Minimum Waste and Lower Bound Index. Batun and Azizoğlu (2009) worked on

total flow time single machine problem with preventative maintenance. In this

problem, the assumption is that jobs must be restarted when disrupted by the

7

maintenance activities. Another assumption is that starting time and duration of

these activities are already known. Under these conditions, they proposed Branch

and Bound as a solution method. Their computations showed that Branch and

Bound method performed well in a large sized problem, up to 80 jobs.

Hariga (1994) considered the maintenance problem with m non-identical machines.

The objective is to determine cyclic overhaul schedule for a manufacturing system.

Hariga (1994) also made some assumptions according to the impact of

maintenances (overhauls). While major overhauls bring the machines to new

conditions (operating age becomes zero), minor overhauls only restore machines to

specified operating conditions. Hariga (1994) was developed a heuristic algorithm

to determine overhaul schedule instead of optimization model since solving the

latter was more difficult. Also, the computations yielded good results for the

heuristic algorithm.

2.1.2 Stochastic Maintenance

Cassady and Kutanoglu (2005) made a study about single machine scheduling

problem by incorporating preventative maintenance to minimize the total expected

weighted completion time. They considered that machines are subject to failures,

and the failure rate is determined by using the Weibull distribution. They proposed

an optimization model to solve this type of problem, and they compared the

performance of integrated scheduling with non-integrated scheduling. Pan et al.

(2010) considered similar problem settings to Cassady and Kutanoglu (2005), but

their objective was minimizing the maximum weighted tardiness. They proposed

an integrated scheduling model that includes production scheduling and preventive

maintenance to deal with this type of problem. Wang and Liu (2013) investigated

single machine production scheduling with preventative maintenance planning,

where objective is minimizing total weighted completion time of jobs. Machine

8

breakdowns occur, and the time to breakdown is subject to a Weibull probability

distribution. Branch and bound was used as solution approach whose efficiency is

enhanced with powerful upper and lower bounds. After these efforts, they solved

problems with up to 18 jobs in a reasonable time. Halim et al. (2020) proposed a

hybrid method that is a combination of a genetic algorithm with a Monte Carlo

simulation method for solving single machine scheduling with random machine

breakdowns where the objective is integrating the production and preventative

maintenance to minimize the total completion time. Firstly, they utilized simulation

to predict the breakdown time, and the genetic algorithm was used through easy to

implement for scheduling the jobs.

2.2 Stochastic Programming for Machine Scheduling Problems

van den Akker et al. (2018) considered a stochastic single machine environment

where changes in processing times of jobs are due to disturbance. Their approach

was to propose recovery actions to be implemented to reach optimal solution for

minimizing number of late jobs when a change occurs. To achieve that, they

proposed to use a combination of two stage stochastic programming and

recoverable robustness. Several algorithms, dynamic programming, branch and

bound and branch and price, were used as solution methods for this problem. After

computations, they concluded that dynamic programming was the worst method,

and branching algorithms were better. In spite of the fact that there were no

difference between branching methods, they proposed using branch and bound as it

was easily implemented.

Khamis and M’Hallal (2011) also utilized two stage stochastic programming, but

problem environment was totally different. They dealt with the parallel machine

scheduling problem in which due dates of jobs are uncertain, and their objective

was to determine optimal machine capacities to maximize profit. They divided the

model into two stages, the first stage and the second stage. While they determined

9

optimal capacities for each machine in the first stage, they tried to estimate profit

with respect to determined capacities in the second stage. To solve this problem,

they combined ranking and selection procedure and used sample average

approximation. Also, they used branch and bound method to solve the second stage

of the problem.

Özçelik et al. (2021) considered single machine scheduling problem with stochastic

sequence dependent set-up times, where objective function is minimizing total

expected cost that consists of set-up, tardiness and earliness cost. They develop a

mathematical model that includes a combination of single machine scheduling with

stochastic sequence-dependent setup time and cost function, however, could not

find the optimal solution in CPLEX in a reasonable time. For this reason, they

looked for heuristic and metaheuristic methods, and decided to use harmony search

algorithm due to its great search ability and simplicity. Then, they proposed two

stage stochastic programming model with harmony search heuristic to solve the

large-sized problems.

Atakan et al. (2016) studied value-at-risk minimization in single machine

scheduling problems under unforeseeable conditions and parameters. They

benefited from Lagrangian relaxation-based scenario decomposition method for

obtaining lower bound, and proposed risk-averse stochastic programming model.

van den Akker and Hoogeven (2008) considered single machine scheduling

problems with stochastic processing times, to minimize the number of late jobs.

They used a chance constraint to decide whether job is stochastically completed on

time or late. A theorem was developed for different stochastic processing times

distributions to convert stochastic problems to deterministic problems. They also

scrutinized maximizing expected number of on time jobs.

10

11

CHAPTER 3

3 PROBLEM DEFINITION AND FORMULATION

In this chapter, we define our problem, give the basics of the stochastic

programming approach and present two alternate stochastic programming models

for the defined problem. We also report on the model used to assess the value of

our stochastic programming approach.

3.1 Problem Description

We consider a single machine scheduling model with n jobs. Task i has

deterministic processing time of 𝑝𝑖 time units and the machine is subject to a single

breakdown whose occurrence time is probabilistic. The jobs are indexed in non-

decreasing order of processing times: if 𝑗 > 𝑖 , then 𝑝𝑗 ≥ 𝑝𝑖.

There are m possible times of the breakdown each of which is referred to as a

scenario. Scenario k is characterized by its breakdown time 𝑠𝑘, breakdown duration

𝑑𝑘 and occurrence probability 𝜋𝑘.

We make the following additional assumptions:

- All jobs are available at time zero and most one job can be processed at a

time.

- The jobs are non-resumable, i.e., they are restarted once interrupted by the

breakdown.

- The uncertainty in machine breakdown and repair durations is represented

by a set of scenarios.

12

- The breakdown time for each scenario cannot be greater than the sum of

jobs’ processing time.

Our problem is to sequence the n jobs on a single machine to minimize the

expected completion time of the last sequenced task, i.e., expected makespan. We

express the expected makespan as ∑ 𝜋𝑘 ∗ 𝐶𝑚𝑎𝑥,𝑘
𝑚
𝑘=1 where 𝐶𝑚𝑎𝑥,𝑘 is the

completion time of the last job according to scenario k. Makespan is an important

concern in batch manufacturing systems where the jobs arrive in lots and the next

batch start after all jobs of the current batch is completed.

3.2 Stochastic Programming (SP) Basics

Stochastic programming is a mathematical program which includes problem

parameters that are not known with certainty. Real world problems almost always

involve stochastic parameters instead of fixed parameters known in advance. In

stochastic programming, these parameters are estimated by using probability

distributions.

Two-stage stochastic programming (SP) framework is the simplest structure

stochastic programming where the decision variables are divided into two groups

as the first-stage and the second-stage decision variables. The first-stage decisions

(𝒙) are made and implemented before the resolution of the uncertainty, whereas the

implementation of the second-stage decision variables (𝒚) takes place after the

resolution of the uncertainty, i.e., after the second-stage parameters (random vector

𝝃) become known.

Aligned with this structure, Birge (2011) states extensive form of two stage SP

model as follows:

13

min 𝑐𝑇𝑥 + 𝐸𝜉𝑄(𝑥, 𝜉)

s.t

𝐴𝑥 = 𝑏

𝑥 ≥ 0

where 𝑄(𝑥, 𝜉) = min {𝑞𝑇𝑦 | 𝑊𝑦 = ℎ − 𝑇𝑥, 𝑦 ≥ 0}, and 𝜉 is the vector composed

by the components of 𝑞𝑇 , ℎ𝑇, and T. In addition, 𝐸𝜉 denote mathematical

expectation with respect to 𝜉. Also, W is assumed as fixed.

3.3 Stochastic Programming Models

In this section, we present two SP models that are precedence based and position

based.

3.3.1 Precedence Based Mixed Integer Linear Program

The model forms the solution by using the precedence sequences of the jobs in the

optimal solution. Hence we define our decision variable as an indicator variable

that takes value 1 if a job precedes another task in the optimal solution. We

hereafter refer to this model as 𝑆𝑃1.

𝑆𝑃1 uses the following notation:

Indices

𝑖, 𝑗= task (job) indices, 1,…,n

𝑘= scenario index, 1,…,m

Parameters

𝑝𝑖 = processing time of job i i =1,…,n

14

𝜋𝑘 = occurrence probability of scenario k k=1,…,m

𝑠𝑘 = breakdown time of scenario k k=1,…,m

𝑀1𝑘 = an upper bound on the completion time in scenario k k=1,…,m

𝑀2𝑘 = an upper bound on the completion time in scenario k k=1,…,m

𝑀 = an upper bound on the subtour constraint

𝑑𝑘 = breakdown duration in scenario k k=1,…,m

Decision Variables

𝑥𝑖𝑗 = {
1 if job i precedes job 𝑗 (general precedence, not immediate precedence)
0 otherwise

where i, j=1,…,n

𝑦𝑗𝑘 = {
1 if job 𝑗 is completed before breakdown in scenario 𝑘
0 otherwise

where j=1,…,n and k=1,…,m

𝐶𝑚𝑎𝑥,𝑘 = makespan value in scenario 𝑘 where k=1,…,m

𝐶𝑗 = 𝑑ummy completion time of job 𝑗 where j=1,…,n

Mathematical Model

Objective Function: min ∑ 𝜋𝑘 ∗ 𝐶𝑚𝑎𝑥,𝑘𝑘 (1)

Subject to

𝑥𝑖𝑗 + 𝑥𝑗𝑖 = 1 ∀𝑗 > 𝑖 (2)

∑ 𝑝𝑖𝑥𝑖𝑗𝑖≠𝑗 + 𝑝𝑗 ≤ 𝑠𝑘 + 𝑀1𝑘(1 − 𝑦𝑗𝑘) ∀𝑗, 𝑘 (3)

where 𝑀1𝑘 = ∑ (𝑝𝑗)𝑗 − 𝑠𝑘

∑ 𝑝𝑖𝑥𝑖𝑗𝑖≠𝑗 + 𝑝𝑗 ≥ 𝑠𝑘 − 𝑀2𝑘(𝑦𝑗𝑘) ∀𝑗, 𝑘 (4)

15

where 𝑀2𝑘 = 𝑠𝑘

𝐶𝑚𝑎𝑥,𝑘 = (𝑠𝑘 + 𝑑𝑘) + ∑ 𝑝𝑗(1 − 𝑦𝑗𝑘)𝑗 ∀𝑘: 𝑠𝑘 < ∑ 𝑝𝑗𝑗 (5)

𝐶𝑗 ≥ 𝐶𝑖 + 𝑝𝑗 − 𝑀(1 − 𝑥𝑖𝑗) ∀𝑗 ≠ 𝑖 (6)

where 𝑀 = 2 ∑ 𝑝𝑗𝑗 + 𝑚𝑎𝑥𝑘 (𝑑𝑘)

𝑥𝑖𝑗 ∈ {0,1} ∀𝑗 ≠ 𝑖 (7)

𝑦𝑗𝑘 ∈ {0,1} ∀𝑗, 𝑘 (8)

𝐶𝑗 ≥ 0 ∀𝑗 (9)

𝐶𝑚𝑎𝑥,𝑘 ≥ 0 ∀𝑘 (10)

The objective function (1) corresponds to minimizing the expected makespan. The

makespan values are calculated for each scenario separately, then, the values are

multiplied by the occurrence probability of the scenario, 𝜋𝑘, and summed up.

Constraint set (2) ensures that either 𝑖 precedes 𝑗 or 𝑗 precedes 𝑖, thus only one x

variable for the same i and j values is equal to one. Constraint sets (3) and (4) are

formulated to make sure that 𝑦𝑗𝑘 = 1 if 𝑗 is completed before 𝑠𝑘 and 𝑦𝑗𝑘 = 0 if 𝑗 is

completed after 𝑠𝑘, respectively. Constraint set (5) computes the makespan for each

scenario. This constraint is the sum of breakdown time, breakdown duration and

the set of jobs that have been operated after the breakdown. Constraint (6) can be

considered as subsequence elimination constraints. It makes sure that job j starts

after job i completes if 𝑥𝑖𝑗 = 1. Note that 𝐶𝑗 variables do not represent the real

completion times. Constraint sets (7) and (8) are the binary set restrictions on the

variables. Constraint sets (9) and (10) ensure that variables take nonnegative

values.

16

3.3.2 Position Based Mixed Integer Linear Program

The model forms the solution by using the assignments of the jobs to the positions.

Hence we define our decision variable as an indicator variable that takes value 1 if

a job is assigned to a particular position. We keep the position assignments

identical over all scenarios. We hereafter refer to the model as 𝑆𝑃2.

𝑆𝑃2 uses the same parameters and indices with 𝑆𝑃1. Additionally, we define an

index r such that: 𝑟 = {
1 before breakdown
2 after breakdown

Decision Variables

𝑥𝑗𝑡𝑟𝑘

= {
1 if job 𝑗 is assigned to position 𝑡 and completed {

before (𝑟 = 1)

after (𝑟 = 2)
} the breakdown in scenario 𝑘

0 otherwise

where j=1,…,n, t=1,…,n, r=1,2 and k=1,…,m.

𝐶𝑚𝑎𝑥,𝑘 = makespan value under scenario 𝑘 where k=1,…,m.

Mathematical Model

Objective Function: min ∑ 𝜋𝑘 ∗ 𝐶𝑚𝑎𝑥,𝑘𝑘 (11)

Subject to

∑ 𝑥𝑗𝑡𝑟𝑘𝑡,𝑟 = 1 ∀𝑗, 𝑘 (12)

∑ 𝑥𝑗𝑡𝑟𝑘𝑗,𝑟 = 1 ∀𝑡, 𝑘 (13)

∑ 𝑗 ∗ 𝑥𝑗𝑡𝑟𝑘𝑗,𝑟 = ∑ 𝑗 ∗ 𝑥𝑗𝑡𝑟(𝑘+1)𝑗,𝑟 ∀𝑡, 𝑘 < 𝑚 (14)

∑ 𝑝𝑗𝑥𝑗𝑡1𝑘𝑗,𝑡 ≤ 𝑠𝑘 ∀𝑘 (15)

∑ 𝑥𝑗(𝑡+1)2𝑘𝑗 ≥ ∑ 𝑥𝑗𝑡2𝑘𝑗 ∀𝑘, 𝑡 < 𝑛 (16)

𝐶𝑚𝑎𝑥,𝑘 = 𝑠𝑘 + 𝑑𝑘 + ∑ 𝑝𝑗𝑥𝑗𝑡2𝑘𝑗,𝑡 ∀𝑘: 𝑠𝑘 < ∑ 𝑝𝑗𝑗 (17)

17

𝑥𝑗𝑡𝑟𝑘 ∈ {0,1} ∀𝑗, 𝑡, 𝑟, 𝑘 (18)

𝐶𝑚𝑎𝑥,𝑘 ≥ 0 ∀𝑘 (19)

As in 𝑆𝑃1 the objective function (11) represents minimizing the expected

makespan.

Constraint set (12) ensures that each job is assigned to a position. Constraint set

(13) guarantees that there is exactly one job in each position. Constraint set (14)

forces the same sequence for all scenarios. Constraint set (15) is added for

determining the set of jobs before the breakdown. It guarantees that summation of

the processing times of the jobs completed before the breakdown does not exceed

breakdown time. Constraint set (16) is related to the proper use of the positions. It

ensures that later positions are used after the breakdown. The constraint together

with the Constraint set (13) ensures that earlier positions are used first before the

breakdown. Constraint set (17) defines the makespan values. Constraint sets (18)

and (19) are binary and nonnegativity constraints, respectively.

3.4 An Example

We illustrate the model solution through 10-job and 3-scenario instance whose data

are tabulated below.

Table 3. 1 Processing times of jobs in example

i 1 2 3 4 5 6 7 8 9 10

𝒑𝒊 5 12 19 26 41 49 53 72 78 95

Table 3. 2 Breakdowns times and probabilities of an example

k 1 2 3

𝒔𝒌 100 200 300

𝝅𝒌 0.2 0.3 0.5

18

The breakdown durations (i.e. 𝑑𝑘values) are assumed to be zero.

Using the CPLEX solver, the GAMS software gives the following optimal job

sequence:

3-4-2-5-7-6-1-10-9-8

• If scenario 1 occurs, the schedule will be implemented as:

Table 3. 3 Proposed schedule that shows the breakdown of scenario 1

19 45 57 98 153 202 207 302 380 452

3 4 2 5 7 7 6 1 10 9 8

As the jobs are nonresumable, 2 units of job 7 before the breakdown are wasted

(shown by a shaded box) and job 7 restarts after the breakdown and processed for

53 units. The resulting 𝐶𝑚𝑎𝑥 value, i.e, 𝐶𝑚𝑎𝑥,1 is calculated as:

𝐶𝑚𝑎𝑥,1 = 100 + 𝑝7 + 𝑝6 + 𝑝1 + 𝑝10 + 𝑝9 + 𝑝8 = 452

• If scenario 2 occurs, the schedule will be implemented as:

Table 3. 4 Proposed schedule that shows the breakdown of scenario 2

19 45 57 98 151 200 205 300 378 450

3 4 2 5 7 6 1 10 9 8

𝑠2 coincides with the completion of time Job 6, hence there will no idle time.

𝐶𝑚𝑎𝑥,2 value is then the sum of the processing times of all jobs, i.e.,

𝐶𝑚𝑎𝑥,2 = 𝑝3 + 𝑝4 + 𝑝2 + 𝑝5 + 𝑝7 + 𝑝6 + 𝑝1 + 𝑝10 + 𝑝9 + 𝑝8 = 450

• If scenario 3 occurs, the schedule will be implemented as:

19

Table 3. 5 Proposed schedule that shows the breakdown of scenario 3

19 45 57 98 151 200 205 300 378 450

3 4 2 5 7 6 1 10 9 8

As in scenario 2, in scenario 3, the breakdown time coincides with a job

completion, hence 𝐶𝑚𝑎𝑥,3 is the sum of the processing times of all jobs, i.e., 450.

Using the 𝐶𝑚𝑎𝑥,𝑘 and 𝜋𝑘 values, the optimal objective function values, 𝑧∗, is found

as

𝑧∗ = ∑ 𝜋𝑘 ∗ 𝐶𝑚𝑎𝑥,𝑘𝑘

 = 𝜋1 ∗ 𝐶𝑚𝑎𝑥,1 + 𝜋2 ∗ 𝐶𝑚𝑎𝑥,2 + 𝜋3 ∗ 𝐶𝑚𝑎𝑥,3

= 0.2 ∗ 452 + 0.3 ∗ 450 + 0.5 ∗ 450

 = 450.4

3.5 Expected Value Problem and the Value of the Stochastic Solution

The Expected Value Problem (EVP) is the deterministic counterpart of a Stochastic

Problem (SP) where all the random parameters are replaced by their expected

values. In other words, EVP can be considered an SP with a single scenario where

the values of random parameters are set to their expected values. We refer to this

single scenario as the expected value scenario (EV scenario).

When the problem is deterministic, i.e., when we have a single scenario as in the

EVP, once the set of jobs to be processed before the breakdown is determined, any

job sequence where this set is processed before the remaining ones would achieve

the same objective function value for the EVP. Therefore, we can further simplify

the EVP for the two-stage SP presented in Section 3.2 by removing the sequencing

decisions, which would yield a knapsack problem where the capacity of the

20

knapsack is the expected breakdown time and the capacity usage values for the

items (i.e., jobs) are the processing times. In compliance with this scheme, letting

𝑠̅ = ∑ 𝜋𝑘 ∗ 𝑠𝑘𝑘 denote the expected breakdown and 𝑥𝑖 be a binary variable which is

1 if job 𝑖 is processed before the breakdown (0 otherwise), the corresponding EVP

can be formulated as:

max ∑ 𝑝𝑖 ∗ 𝑥𝑖

𝑖

Subject to

∑ 𝑝𝑖𝑖 ∗ 𝑥𝑖 ≤ 𝑠̅

𝑥𝑖 ∈ {0,1} ∀𝑖

By solving the above model, the optimal set of jobs to be processed (i.e., the jobs

with 𝑥𝑖
∗ = 1) can be identified. A sequence where the jobs with 𝑥𝑖

∗ = 1 are

processed before the jobs with 𝑥𝑖
∗ = 0 yields the same objective function value for

the EVP. Without loss of generality, we use Shortest Processing Time (SPT)

sequence within each group of jobs. The optimal objective function value of the

EVP can be simply computed as the makespan for the EV scenario. The actual

value of using a given sequence, which is known as the expected value of using the

EV solution (EEV), can also be computed easily by considering the makespan for

every scenario as:

𝑧𝐸𝐸𝑉 = ∑ 𝜋𝑘

𝑘

∗ 𝐶𝑚𝑎𝑥,𝑘

where 𝜋𝑘 is the realization probability of scenario 𝑘 and 𝐶𝑚𝑎𝑥,𝑘 is the makespan

under scenario 𝑘.

The Value of the Stochastic Solution (VSS) measures how well the SP solution

performs with respect to the EVP solution and it is computed as the difference

between the expected objective values attained by these solutions as:

21

𝑉𝑆𝑆 = 𝑧𝐸𝐸𝑉 − 𝑧𝑆𝑃
∗ ,

where 𝑧𝑆𝑃
∗ is the optimal objective function of the SP. VSS shows the expected

improvement in the objective function as a result of using a stochastic model rather

than a deterministic model.

3.6 An Example

By using the data given in the example presented in Section 3.4, the expected

breakdown is obtained as 𝑠̅ = ∑ 𝜋𝑘 ∗ 𝑠𝑘𝑘 = 0.2 ∗ 100 + 0.3 ∗ 200 + 0.5 ∗ 300 =

230. The EVP based on this expected value scenario is solved and the following

results are obtained:

Table 3. 6 Output of the knapsack problem

Variables 𝑥𝑖
∗ = 1 𝑥𝑖

∗ = 0

Jobs

1 7

2 8

3 10

4

5

6

9

Using the solution of the EVP and considering the SPT sequence within each

group, we obtain the sequence to be evaluated as 1-2-3-4-5-6-9-7-8-10. A detailed

illustration of the realization of job completion times for each scenario is presented

below.

22

EV solution for scenario 1:

Table 3. 7 Schedule of EV solution for scenario 1

5 17 36 62 141 190 268 321 393 488

1 2 3 4 5 5 6 9 7 8 10

At time t=100, job 5 is interrupted and hence it is restarted after the breakdown.

Makespan for this scenario is 𝐶𝑚𝑎𝑥,1 = 488.

EV solution for scenario 2:

Table 3. 8 Schedule of EV solution for scenario 2

5 17 36 62 103 152 278 331 403 498

1 2 3 4 5 6 9 9 7 8 10

At time t=200, job 9 is interrupted and hence it is restarted after the breakdown.

Makespan for this scenario is 𝐶𝑚𝑎𝑥,2 = 498.

EV solution for scenario 3:

Table 3. 9 Schedule of EV solution for scenario 3

5 17 36 62 103 152 230 283 372 467

1 2 3 4 5 6 9 7 8 8 10

At time t=300, job 8 is interrupted and hence it is restarted after the breakdown.

Makespan for this scenario is 𝐶𝑚𝑎𝑥,3 = 467.

Then, EEV is calculated as follows:

𝑧𝐸𝐸𝑉 = ∑ 𝜋𝑘

𝑘

∗ 𝐶𝑚𝑎𝑥,𝑘 = 0.2 ∗ 488 + 0.3 ∗ 498 + 0.5 ∗ 467 = 480.5

From Section 3.4, the optimal objective function value of the SP solution is 𝑧𝑆𝑃
∗ =

450.4. Then, the VSS can be computed as:

23

𝑉𝑆𝑆 = 𝑧𝐸𝐸𝑉 − 𝑧𝑆𝑃
∗ = 480.5 − 450.4 = 30.1

The expected objective value is reduced to 450.4, which corresponds to an

improvement of 30.1 units by including stochasticity in the model. Although

solving the SP rather than the EVP is computationally more challenging, the

associated benefits could be significant as also illustrated by this example.

24

25

CHAPTER 4

4 BRANCH & BOUND METHOD

The aim of a branch and bound (B&B) algorithm is to find an optimal solution by

reducing the search space of all feasible solutions using some mechanisms like

dominance rules, lower and upper bounds.

In this chapter, we first give the basics of a B&B algorithm (Section 4.1). In section

4.2, we describe our branch and bound algorithm in detail.

4.1 Basics of Branch and Bound Method

The solution space is divided into feasible subspaces. The subspaces are called

nodes, each of which is evaluated by estimates of the optimal objective function

values, called bounds. The evaluation process completes when all nodes are

implicitly or explicitly evaluated (visited or fathomed). At termination, the

algorithm returns an optimal or a predefined satisfactory solution.

A typical sequencing problem requires the evaluation of n! complete solutions. A

branch and bound algorithm evaluate those solutions implicitly as shown in the

below figure.

26

Figure 4.1 A partial branching tree

4.2 Proposed Branch and Bound Algorithm

All n! sequences of the single machine makespan problem are identical when there

are no breakdowns. When there are breakdowns, many, but not all, of those

sequences are identical. To avoid the generation of identical sequences, we propose

an efficient branching scheme.

According to our branching scheme, we generate nodes representing the eligible

jobs. We call a task, say job j, eligible for partial sequence (PS) if one of the

following conditions holds:

i. j > r when job r is the last sequenced job of PS.

ii. ∑ 𝑝𝑖 + 𝑝𝑗𝑖∈𝑃𝑆 > 𝑠𝑘 where k satisfies 𝑠𝑘−1 < ∑ 𝑝𝑖𝑖∈𝑃𝑆 < 𝑠𝑘

27

With this branching scheme, we avoid the repetition of many partial solutions. We

clarify the branching scheme using a 5-job and 3-scenario example instance whose

data are tabulated below.

Table 4.1 Processing time data

𝒊 1 2 3 4 5

𝒑𝒊 7 32 53 60 70

Table 4.2 Breakdown time data

𝒌 1 2 3

𝒔𝒌 47 100 140

Assume PS = {1}, jobs 2,3,4, and 5 can be added to PS as their indices are higher

than that of job 1.

Now assume PS = {2}, jobs 3,4, and 5 can be added to PS as their indices are

higher than that of job 1. Job 1 cannot be assigned as 1 ≯ 2 and ∑ 𝑝𝑖 + 𝑝1 =𝑖∈𝑃𝑆

32 + 7 < 47 = 𝑠1

Partial sequence {2,1} is not created as it is identical to {1,2}.

Now assume a partial sequence PS = {1,4} and ∑ 𝑝𝑖 = 𝑝1 + 𝑝4 = 67𝑖∈𝑃𝑆 .

- Job 5 can be added as 5 > 4.

- Job 2 cannot be added as 2 ≮ 4 and ∑ 𝑝𝑖 + 𝑝2 = 67 + 32 = 99 <𝑖∈𝑃𝑆

100 = 𝑠2 where 𝑠1= 47 < ∑ 𝑝𝑖𝑖∈𝑃𝑆 = 67 < 100.

{1,4,2} is not created as it is identical to {1,2,4}.

- Job 3 can be added as:

∑ 𝑝𝑖 + 𝑝3 = 67 + 53 = 120 > 100 = 𝑠2𝑖∈𝑃𝑆 where where 𝑠1= 47 < ∑ 𝑝𝑖𝑖∈𝑃𝑆 <

100.

28

{1,4,3} is created as it is not identical to {1,3,4}.

4.3 Bounding Mechanisms

Lower bounds are underestimates of the optimal objective function values. The

efficiency of a branch and bound algorithm highly depends on the power of the

lower bounds that help to fathom the nonpromising nodes without evaluating them.

A partial schedule is eliminated value whenever its lower bound value is no less

than the best known upper bound value. The upper bounds are overestimates of the

optimal objective function values and they are usually found by evaluating any

feasible solution to a problem.

In our study, we evaluate the following three feasible sequences:

i. Shortest Processing Time (SPT)

ii. Longest Processing Time (LPT)

We evaluate the above sequences and use the one that yields the minimum

objective function value as an initial upper bound. The initial upper bound is

updated whenever we find a complete solution with a smaller makespan value.

We develop two lower bounds using the idea of evaluating the sequences for each

scenario. For a partial sequence PS, we found a lower bound on PS, 𝐿𝐵 (𝑃𝑆) as

follows:

𝐿𝐵(𝑃𝑆) = ∑ 𝜋𝑘

𝑚

𝑘=1

∗ 𝐿𝐵 (𝑃𝑆 | 𝑘)

where 𝐿𝐵 (𝑃𝑆 | 𝑘) is a lower bound the makespan value given scenario k, i.e., a

lower bound on a deterministic problem with a single scenario that occurs at time

𝑠𝑘. We take breakdown time, 𝑑𝑘, zero, as it is irrelevant to optimization.

29

To find 𝐿𝐵(𝑃𝑆), we use two approaches. The first approach, 𝐿𝐵1(𝑃𝑆), is used as a

filtering mechanism.

To find 𝐿𝐵1(𝑃𝑆), through 𝐿𝐵1(𝑃𝑆 | 𝑘) values, we consider two cases.

Case 1. 𝑠𝑘 ≤ ∑ 𝑝𝑖𝑖∈𝑃𝑆 then evaluate the PS by appending the unsequenced

jobs in any order, let the resulting 𝐶𝑚𝑎𝑥 value be 𝐿𝐵1(𝑃𝑆 | 𝑘).

PS is the given order, once the order is used 𝑠𝑘 will be exceeded and the sequence

of the unsequenced jobs becomes immaterial, altogether contributing to the lower

bound as ∑ 𝑝𝑖.𝑖

Case 2. 𝑠𝑘 > ∑ 𝑝𝑖𝑖∈𝑃𝑆 then we set 𝐿𝐵1(𝑃𝑆 | 𝑘) = ∑ 𝑝𝑖𝑖 .

Hence we assume the jobs can be preempted as all sequences are immaterial each

leading to a makespan value of ∑ 𝑝𝑖
𝑛
𝑖=1 .

We illustrate 𝐿𝐵1(𝑃𝑆) via the following example instance with 5 jobs and 4

scenarios.

Tablo 4.3 Processing time of jobs in example

𝒊 1 2 3 4 5

𝒑𝒊 10 30 40 50 60

Tablo 4.4 Breakdown time and occurrence probability data

𝒌 1 2 3 4

𝒔𝒌 20 30 100 190

𝝅𝒌 0.2 0.3 0.4 0.1

Assume PS={1,2}, ∑ 𝑝𝑖 = 40𝑖∈𝑃𝑆 and ∑ 𝑝𝑖 = 150𝑖∉𝑃𝑆

- For k=1, 𝑠1 = 20 < ∑ 𝑝𝑖 = 40𝑖∈𝑃𝑆

30

Hence case 1 occurs.

𝐿𝐵1(𝑃𝑆 | 1) = 𝑠1 + 𝑝2 + ∑ 𝑝𝑖

𝑖∉𝑃𝑆

= 20 + 30 + 150 = 200

- For k=2, 𝑠1 = 30 < ∑ 𝑝𝑖 = 40𝑖∈𝑃𝑆

Case 1 occurs.

𝐿𝐵1(𝑃𝑆 | 2) = 𝑠2 + 𝑝2 + ∑ 𝑝𝑖

𝑖∉𝑃𝑆

= 30 + 30 + 150 = 210

- For k=3, 𝑠3 = 100 > ∑ 𝑝𝑖 = 40𝑖∈𝑃𝑆

Case 2 occurs.

𝐿𝐵1(𝑃𝑆 | 3) = ∑ 𝑝𝑖

𝑖∈𝑃𝑆

= 190

- For k=4, 𝑠4 = 190 > 40

Case 2 occurs.

𝐿𝐵1(𝑃𝑆 | 4) = ∑ 𝑝𝑖

𝑖∈𝑃𝑆

= 190

The overall lower bound, 𝐿𝐵1(𝑃𝑆) is found as:

𝐿𝐵1(𝑃𝑆) = ∑ 𝜋𝑘 ∗ 𝐿𝐵1(𝑃𝑆 | 𝑘)

4

𝑘=1

= 0,2 ∗ 200 + 0,3 ∗ 210 + 0,4 ∗ 190 + 0,1 ∗ 190

= 198

The second approach, 𝐿𝐵2(𝑃𝑆), proceeds like 𝐿𝐵1(𝑃𝑆) when 𝑠𝑘 ≤ ∑ 𝑝𝑖𝑖∈𝑆 ,

however, improves 𝐿𝐵1(𝑃𝑆) for case 2. In doing so, we let 𝑅𝑘 be an upper bound

on the number of jobs that can be processed before 𝑠𝑘, and we let 𝐼𝑘 denote the

time left for unsequenced jobs after the last job in PS is processed, accordingly

𝐼𝑘 = 𝑠𝑘 − ∑ 𝑝𝑖𝑖∈𝑃𝑆 which is positive for case 2.

To find 𝑅𝑘, we use the following relation:

31

∑ 𝑝𝑖 ≤ 𝑠𝑘
𝑅𝑘
𝑖=1 and ∑ 𝑝𝑖 > 𝑠𝑘

𝑅𝑘+1
𝑖=1 where 𝑝𝑖 is the 𝑖𝑡ℎ smallest processing in the

unsequenced jobs set, i.e., 𝑃𝑆̅̅̅̅ .

We consider four cases for 𝑅𝑘 values.

Case 1. 𝑅𝑘 = 0

𝐿𝐵2(𝑃𝑆 | 𝑘) = 𝑠𝑘 + ∑ 𝑝𝑖

𝑖∉𝑃𝑆

Case 2. 𝑅𝑘 = 1

We find the largest 𝑝𝑖 in 𝑃𝑆̅̅̅̅ , that is no more than 𝐼𝑘, i.e.,

𝑟 = 𝑀𝑎𝑥{𝑖𝜖𝑃𝑆̅̅̅̅ | 𝑝𝑖 ≤ 𝐼𝑘}

𝐿𝐵2(𝑃𝑆 | 𝑘) = 𝑠𝑘 + ∑ 𝑝𝑖

𝑖∉𝑃𝑆

− 𝑝𝑟

Thus, we maximize the processing time put in 𝐼𝑘, thereby minimizing the

makespan.

Case 3. 𝑅𝑘 = 2

As in Case 2, we aim to maximize the processing put in 𝐼𝑘. This can be done in two

ways with a single job or with a job pair.

A single job that maximizes the total processing should satisfy the following

condition:

𝑝[𝑟] = 𝑀𝑎𝑥 { 𝑝[𝑖] |[𝑖] 𝜖 𝑃𝑆̅̅̅̅ , 𝑝[𝑖] ≤ 𝐼𝑘 ≤ 𝑝[𝑖] + 𝑝[1]}

Note that such [r] may not exist.

This condition follows that jobs [r+1], [r+2], … cannot fit in 𝐼𝑘 and job[r] cannot fit

in 𝐼𝑘 together with another unsequenced job.

32

A job pair that maximizes the total processing can be found through the following

procedure.

Step 0. If [r] does not exist, [r] is the index of the longest job that fits in 𝐼𝑘 in 𝑃𝑆̅̅̅̅ +

1.

𝑃𝑆𝑆 = 𝑃𝑆̅̅̅̅

𝑃 = 𝑝[𝑟]

Step 1. Find the longest job in PSS that fits in 𝐼𝑘 together with job[r], hence find

job[a] that satisfies the following condition:

𝑝[𝑎] = 𝑀𝑎𝑥 {𝑝[𝑖]|[𝑖] 𝜖 𝑃𝑆𝑆, 𝑝[𝑖] + 𝑝[𝑟−1] ≤ 𝐼𝑘}

If such a job [a] does not exist, go to Step 3.

𝑝 = max {𝑝, 𝑝[𝑎] + 𝑝[𝑟−1]}

Step 2. PSS = PSS \{[1],…[a]}

The unsequenced jobs set is updated as the shorter jobs cannot fill 𝐼𝑘 better.

𝑟 = 𝑟 − 1

Go to Step 1.

Step 3. Stop

𝐿𝐵2(𝑃𝑆 | 𝑘) = 𝑠𝑘 + ∑ 𝑝𝑖

𝑖∈𝑃𝑆̅̅̅̅

− 𝑝

Case 4. k∗ ≥ 3

 Case 4.1. The longest unsequenced 𝑅𝑘 tasks can fit to 𝐼𝑘

 ∑ 𝑝[𝑖]
′𝑅𝑘

𝑖=1 < 𝐼𝑘 where 𝑝[𝑖]
′ is the longest unscheduled job that can fit in 𝐼𝑘,i.e.,

𝑝[𝑖]
′ < 𝐼𝑘 for all i.

33

𝐿𝐵2(𝑃𝑆 | 𝑘) = 𝑠𝑘 + ∑ 𝑝𝑖

𝑖∈𝑃𝑆

− ∑ 𝑝[𝑖]
′

𝑅𝑘

𝑖=1

 Case 4.2. ∑ 𝑝[𝑖]
′𝑅𝑘

𝑖=1 ≥ 𝐼𝑘

𝐿𝐵2(𝑃𝑆 | 𝑘) = ∑ 𝑝𝑖

n

𝑖=1

In our experiments, we first find 𝐿𝐵1(𝑃𝑆). If 𝐿𝐵1(𝑃𝑆) ≥ 𝑈𝐵 then we fathom PS.

Otherwise, we find 𝐿𝐵2(𝑃𝑆) and fathom PS if 𝐿𝐵2(𝑃𝑆) ≥ 𝑈𝐵.

Batun ve Azizoğlu (2009) used the 𝑘∗ values in their deterministic single machine

total flow problem with several breakdowns. They use the procedure of our Case 4

for all 𝑘∗ values. Thus, we improve the lower bound of Batun ve Azizoğlu (2009)

by providing more efficient bounds for the special cases.

We illustrate 𝐿𝐵2(𝑃𝑆) through a 7-job, 6-scenario example instance whose data are

tabulated below.

Table 4.5 Processing time data for 7-job, 6-scenario example instance

𝒊 1 2 3 4 5 6 7

𝒑𝒊 10 15 20 25 60 75 90

Table 4.6 Breakdown time and occurrence probability data for 7-job, 6-scenario

example instance

𝒌 1 2 3 4 5 6

𝒔𝒌 20 40 65 120 210 295

𝝅𝒌 0.1 0.2 0.3 0.2 0.1 0.1

Assume PS={1,2}:

34

∑ 𝑝𝑖 = 10 + 15 = 25𝑖∈𝑃𝑆 and ∑ 𝑝𝑖 = 20 + 25 + ⋯ + 90 = 270𝑖∉𝑃𝑆

• For k=1

𝑠1 = 20 < ∑ 𝑝𝑖 = 25

𝑖∈𝑃𝑆

𝐿𝐵2(𝑃𝑆 | 1) = 20 + 15 + 270 = 305

• For k=2

𝑠2 = 40 > ∑ 𝑝𝑖 = 25

𝑖∈𝑃𝑆

𝐼2 = 𝑠2 − ∑ 𝑝𝑖 = 40 − 25 = 15

𝑖∈𝑃𝑆

𝑝3 = 20 > 15 ➔ 𝑹𝟐 = 𝟎

𝐿𝐵2(𝑃𝑆 | 2) = 40 + 270 = 310

As 𝑠2 > ∑ 𝑝𝑖𝑖∈𝑃𝑆 , 𝑠𝑘 > ∑ 𝑝𝑖𝑖∈𝑃𝑆 because 𝑠𝑘′𝑠 are in their increasing order, so we do

not check, 𝑠𝑘 > ∑ 𝑝𝑖𝑖∈𝑃𝑆 for later scenarios.

• For k=3

𝐼3 = 𝑠3 − ∑ 𝑝𝑖 = 65 − 25 = 40

𝑖∈𝑃𝑆

𝑝3 = 20 < 40 𝑝3 + 𝑝4 = 20 + 25 > 40 ➔ 𝑅3 = 1

𝑀𝑎𝑥{𝑖𝜖𝑃𝑆̅̅̅̅ | 𝑝𝑖 ≤ 𝐼2} = 𝑀𝑎𝑥{𝑝3, 𝑝4} = 25

𝐿𝐵2(𝑃𝑆 | 3) = 65 + 270 − 25 = 310

• For k=4

𝐼4 = 𝑠4 − ∑ 𝑝𝑖 = 120 − 25 = 95

𝑖∈𝑃𝑆

35

𝑝3 + 𝑝4 = 20 + 25 < 95

𝑝3 + 𝑝4 + 𝑝5 = 105 > 95 ➔ 𝑹𝟒 = 𝟐

We apply the procedure find the jobs that could only fit in 𝐼4 alone.

𝑝7 = 90 < 95 𝑝7 + 𝑝3 = 90 + 20 = 110 > 95

Job 7 fits alone, P=90.

Take 𝑝6. 𝑝6 + 𝑝3 = 95 𝑝6 + 𝑝4 = 100 > 95

𝑝 = max{90,95} = 95

Take 𝑝5. 𝑝5 + 𝑝3 = 80 < 95 𝑝5 + 𝑝4 = 85 < 95

𝑝 = max{95,85} = 95

𝐿𝐵2(𝑃𝑆 | 4) = 120 + 270 − 95 = 295

• For k=5

𝐼5 = 𝑠5 − ∑ 𝑝𝑖 = 210 − 25 = 185

𝑖∈𝑃𝑆

𝑝3 + 𝑝4 + 𝑝5 + 𝑝6 = 180 < 185

𝑝3 + 𝑝4 + 𝑝5 + 𝑝6 + 𝑝7 = 270 > 185 ➔ 𝑹𝟓 = 𝟒

∑ 𝑝[𝑖]
′ = 𝑝7

4

𝑖=1

+ 𝑝6 + 𝑝5 + 𝑝4 = 250 > 𝐼5

𝐿𝐵2(𝑃𝑆 | 5) = ∑ 𝑝𝑖

𝑛

𝑖=1

= 295

• For k=6

𝐼6 = 𝑠6 − ∑ 𝑝𝑖 = 295 − 25 = 270

𝑖∈𝑃𝑆

36

∑ 𝑝𝑖 = 270𝑖∉𝑃𝑆̅̅̅̅ ➔ All jobs in 𝑃𝑆̅̅̅̅ fits.

𝐿𝐵2(𝑃𝑆 | 6) = 295

𝐿𝐵2(𝑃𝑆) = ∑ 𝜋𝑘 ∗6
𝑘=1 𝐿𝐵2(𝑃𝑆| 𝑘) = 0.1 ∗ 305 + 0.2 ∗ 310 + 0.3 ∗ 310 + 0.2 ∗

295 + 0.1 ∗ 295 + 0.1 ∗ 295 = 303.5

37

CHAPTER 5

5 COMPUTATIONAL EXPERIMENTS

In this chapter, we discuss the results of our experiment that is designed to test the

performances of the stochastic programming models and the branch and bound

algorithm. We also assess the value of using a stochastic programming approach,

i.e., the value of the stochastic solution.

In Section 5.1, we report our data generation scheme. Section 5.2 defines our

performance measures. In section 5.3, we discuss the computational results through

our performance measures.

5.1 Data Generation

• We set the number of jobs.

o n = 10 and 15 for the stochastic programming model

o n = from 10 to 50 for the branch and bound algorithm

• We have two sets for processing times, 𝑝𝑖 values. In the first set, Set 1,

processing times are generated from a discrete uniform distribution between

1 and 10, i.e., U [1,10]. In the second set, Set 2, U [1,100] is used to

generate processing times. Note that Set 2 resides higher processing times

in a wider range compared to Set 1.

We assume that the durations of breakdown values are zero as those times are

irrelevant for makespan optimization.

38

• We set the number of scenarios, m, to 3 and 5. The breakdown times, 𝑠𝑘

values, are generated according to two plans:

Plan 1. Periodic 𝑠𝑘 values

In this plan, 𝑠𝑘 is set to
∑ 𝑝𝑖𝑖

𝑚
∗ 𝑘, i.e, 𝑠1 =

∑ 𝑝𝑖𝑖

𝑚
, 𝑠2 = 2 ∗

∑ 𝑝𝑖𝑖

𝑚
, …, 𝑠𝑚 = ∑ 𝑝𝑖𝑖 .

• Note that 𝑠𝑚 corresponds to the end of all processing, i.e., no breakdown

case

Plan 2. Random 𝑠𝑘 values for the first m-1 scenarios.

𝑠𝑘 values are generated randomly between max{𝑝𝑖} and ∑ 𝑝𝑖 − 1𝑖 . We use

max{𝑝𝑖} as the earliest time to guarantee that all jobs can be processed before the

breakdown.

For the last scenario, we take 𝑠𝑚 = ∑ 𝑝𝑖𝑖 to mean that no breakdown has occurred.

• We use two sets for the scenario probability, i.e., 𝜋𝑘 values, as:

Set 1: All scenarios are equally likely to occur, i.e, 𝜋𝑘 =
1

𝑚
 for all k.

Set 2: The later breakdowns are more likely.

For 3-scenario case, we set: 𝜋1 =
1

6
 , 𝜋2 =

2

6
 , 𝜋3 =

3

6

For 5-scenario case, we set: 𝜋1 =
1

15
 , 𝜋2 =

2

15
 , 𝜋3 =

3

15
, 𝜋3 =

4

15
, 𝜋5 =

5

15

For each n, we have two processing time sets, two breakdown plans, two

probability sets, and two values of m, hence 2x2x2x2=16 combinations.

We plan 2 different values of n for the model and 5 different values for the

algorithm of n, yielding a total of 16x2=32 and 16x5=80 combinations for each

solution method, respectively. For each combination, we plan to generate 10

instances. Hence our experiment set will have 320 problem instances for the model

and 800 problem instances for the algorithm.

39

5.2 Performance Measures

We evaluate the performance of the stochastic models by the CPU (Central

Processing Units) seconds. We report average a maximum, i.e., worst case, CPU

times.

For the B&B, we will use the CPU times and the number of nodes as the

performance measures. Average and maximum CPU times and number of nodes

will be reported.

To assess the value of the stochastic programming approach, we evaluate the

expected makespan value of the expected value solution (EEV) and the value of the

stochastic solution (VSS). We report average and maximum EEV-SP values for

each problem combination.

We set a termination limit of two hours both for the mathematical models and

branch and bound algorithm. We also report the number of instances that could be

solved to optimality in two hours.

The mathematical models are solved by CPLEX Optimizer 20.1.0 We code the

branch and bound algorithm using the C++ programming language. All

experiments are conducted on a personal computer with 11th Gen Intel® Core™ i5

-1135G7 @2.40GHz (4CPUs), 2.42GHz processors, and 8GB RAM.

5.3 Analysis of the Results

In this section, we report on the performances of our mathematical models and

branch and bound algorithm (B&B). Section 5.3.1 discusses the performance of the

stochastic models, Precedence Based Stochastic Model (𝑆𝑃1) and the Position

Based Stochastic Model (𝑆𝑃2). Results of the B&B are revealed in the Section

5.3.2, and discussion about these results are made in this section. In addition, VSS

results are discussed in the Section 5.3.3.

40

5.3.1 Stochastic Programming

In this subsection, we report on the relative performances of 𝑆𝑃1 and 𝑆𝑃2 for n=10.

Tables 5.1 and 5.2 compare 𝑆𝑃1 and 𝑆𝑃2 for low processing time (𝑝𝑖~𝑈[1,10]) and

high processing time (𝑝𝑖~𝑈[1,100]), respectively. The tables report on the average

and maximum CPU times, for m=3, 5 and two probability sets.

Table 5. 1 Performances of SP1 and SP2, 𝑝𝑖~𝑈[1,10], n=10

m

Probability

(1=Equal,

2=Later)

SP1 SP2

CPU Time CPU Time

Average Maximum Average Maximum

3
1 11.2 30 1.1 3

2 8.2 12 18.8 187

Table 5. 2 Performances of SP1 and SP2, 𝑝𝑖~𝑈[1,100], n=10

m

Probability

(1=Equal,

2=Later)

SP1 SP2

CPU Time CPU Time

Average Maximum Average Maximum

3
1 5.7 14 612.7 1964

2 5.1 8 292.8 1745

5
1 126.7 969 2002.2 3514

2 89.4 217 2451.9 6101

As can be observed from Tables 5.1 and 5.2, the performances of both models

deteriorate as m increases. This is due to the increase of the binary variables with

increase in m, for both 𝑆𝑃1 and 𝑆𝑃2. We also observe that the performance of 𝑆𝑃1 is

better than that of 𝑆𝑃2 which can be attributed to the fewer binary variables used by

the former model, 𝑆𝑃1.

41

Attributing to the its superior performance particularly for 𝑝𝑖~𝑈[1,100], we

continue the parametric analysis with 𝑆𝑃1 in the next subsection.

We now report on the performance of the precedence based stochastic model, 𝑆𝑃1,

on larger-sized problems. Table 5.3 gives the performance for 𝑝𝑖~𝑈[1,100]. The

table give the average and maximum CPU times and the number of unsolved

instances in two hours. We try on different values of n starting with n=10, in

increments of 5.

Table 5. 3 CPU Times of SP1, 𝑝𝑖~𝑈[1,100]

n m
Probability

(1=Equal, 2=Later)

CPU Time Number

Solved Average Maximum

10

3
1 8.8 30 10

2 6.4 18 10

5
1 112.2 641 10

2 29.1 80 10

15

3
1 3617 7200 1

2 - - -

5
1 - - -

2 - - -

Note from the above tables that when n=10, all instances can be solved in 2 hours.

The average CPU time is about 9 seconds when m=3 and about 110 minutes when

m=5. The maximum CPU time is 10 minutes and observed in equal probability

combination. When n becomes 15, the majority of the instances are left unsolved in

2 hours and the associated entries in Table 5.3 are left empty. The increase in the

complexity of the solutions with increase in n is due to the increase in the number

of binary variables in 𝑆𝑃1. As n increases, the number of binary variables

associated to n increases exponentially.

42

5.3.2 Branch & Bound Algorithm

In this section, we report the results of the proposed branch and bound algorithm.

We consider the average and maximum CPU times (in seconds), the average and

the maximum number of nodes evaluated, and the number of unsolved instances

within the two-hour time limit as our performance measures. We report these

measures for five levels of the number of jobs (n = 10, 20, 30, 40, and 50) and two

levels of the number of scenarios (m = 3 and 5) in Tables 5.4-5.11. The number of

unsolved instances, out of 10 instances within the time limit are presented together

with maximum CPU times and denoted in parentheses.

Table 5. 4 Computational Results for the Branch and Bound Algorithm for Set 1,

Plan 1 and 𝑝𝑖 ~𝑈[1,10]

Table 5. 5 Computational Results for the Branch and Bound Algorithm for Set 1,

Plan 2 and 𝑝𝑖 ~𝑈[1,10]

*The figures in the parentheses give the number of unsolved instances in 2 hours.

Average Maximum Average Maximum Average Maximum Average Maximum

10 0.011 0.014 74 117 0.036 0.087 983 3,208

20 0.033 0.042 210 211 0.605 3038 7,922 39,860

30 0.115 0.141 464 466 0.879 7463 10,931 104,848

40 0.177 0.215 817 821 0.195 0.264 830 889

50 0.249 0.269 1,275 1,276 0.270 0.359 1,298 1,523

n

m=3 m=5

CPU Time Number of Nodes CPU Time Number of Nodes

Average Maximum Average Maximum Average Maximum Average Maximum

10 0.026 0.045 264 1,216 0.056 0.139 950 3,843

20 722.036 7200 (1)* 5,088,702 49,819,874 2.666 24.904 73,820 728,869

30 0.211 0.231 447 466 737.423 7200 (1)* 2,991,954 27,717,338

40 4.126 38.359 62,426 615,837 2598.080 7200 (3)* 18,616,526 88,196,192

50 0.436 0.485 1,289 1,444 1440.231 7200 (2)* 9,732,598 60,060,234

n

m=3 m=5

CPU Time Number of Nodes CPU Time Number of Nodes

43

Table 5.6 Computational Results for the Branch and Bound Algorithm for Set 2,

Plan 1 and 𝑝𝑖 ~𝑈[1,10]

Table 5. 7 Computational Results for the Branch and Bound Algorithm for Set 2,

Plan 2 and 𝑝𝑖 ~𝑈[1,10]

*The figures in the parentheses give the number of unsolved instances in 2 hours.

Table 5. 8 Computational Results for the Branch and Bound Algorithm for Set 1,

Plan 1 and 𝑝𝑖 ~𝑈[1,100]

*The figures in the parentheses give the number of unsolved instances in 2 hours.

Average Maximum Average Maximum Average Maximum Average Maximum

10 0.087 0.104 85 135 0.296 0.637 2,913 11,424

20 0.220 0.404 569 3,668 0.534 3.072 5,806 48,618

30 0.267 0.336 465 466 11.844 100.610 268,391 2,422,754

40 0.373 0.620 814 821 0.217 0.301 865 1,044

50 0.506 0.590 1,271 1,276 69.763 515.374 581,422 4,245,445

n

m=3 m=5

CPU Time Number of Nodes CPU Time Number of Nodes

Average Maximum Average Maximum Average Maximum Average Maximum

10 0.122 0.220 370 3,023 0.646 2.605 19,315 108,439

20 0.407 2.483 7,686 72,036 1443.159 7200 (2)* 40,819,739 206,208,655

30 0.323 0.843 1,338 8,032 8.060 76.215 186,921 1,851,968

40 0.327 0.408 853 1,143 721.237 7200 (1)* 11,532,788 115,233,391

50 0.463 0.576 1,267 1,276 12.32 118.429 209,370 2,080,665

n

m=3 m=5

CPU Time Number of Nodes CPU Time Number of Nodes

Average Maximum Average Maximum Average Maximum Average Maximum

10 0.053 0.102 500 1,526 0.130 0.201 1,366 2,830

20 0.048 0.072 339 676 29.001 216.975 648,147 5,040,425

30 0.079 0.116 471 523 0.470 1.490 7,302 25,474

40 0.108 0.129 833 871 723.572 7200 (1)* 5,778,795 57,245,222

50 0.165 0.181 1,306 1,370 0.285 0.540 1,970 3,699

n

m=3 m=5

CPU Time Number of Nodes CPU Time Number of Nodes

44

Table 5. 9 Computational Results for the Branch and Bound Algorithm for Set 1,

Plan 2 and 𝑝𝑖 ~𝑈[1,100]

*The figures in the parentheses give the number of unsolved instances in 2 hours.

Table 5. 10 Computational Results for the Branch and Bound Algorithm for Set 2,

Plan 1 and 𝑝𝑖 ~𝑈[1,100]

Table 5. 11 Computational Results for the Branch and Bound Algorithm for Set 2,

Plan 2 and 𝑝𝑖 ~𝑈[1,100]

*The figures in the parentheses give the number of unsolved instances in 2 hours.

Average Maximum Average Maximum Average Maximum Average Maximum

10 0.059 0.231 1,639 8,325 0.105 0.205 2,164 6,422

20 0.068 0.154 612 2,806 2347.972 7200 (3)* 47,376,972 180,590,045

30 722.469 7200 (1)* 10,396,335 103,226,591 1457.592 7200 (2)* 15,308,087 109,886,724

40 1440.100 7200 (2)* 12,367,343 65,342,289 2162.353 7200 (3)* 20,688,532 73,484,684

50 1440.190 7200 (2)* 15,966,518 84,327,441 2884.418 7200 (4)* 32,662,854 121,405,021

n

m=3 m=5

CPU Time Number of Nodes CPU Time Number of Nodes

Average Maximum Average Maximum Average Maximum Average Maximum

10 0.132 0.174 825 1,730 0.304 0.395 2,530 6,154

20 0.264 1.334 2,645 22,369 834.931 4876.442 10,138,230 54,407,771

30 0.182 0.263 485 539 3.377 22.388 59,304 444,366

40 0.248 0.295 856 982 0.330 1334.000 1,714 8,544

50 0.304 0.364 1,290 1,396 0.325 0.484 1,431 2,174

n

m=3 m=5

CPU Time Number of Nodes CPU Time Number of Nodes

Average Maximum Average Maximum Average Maximum Average Maximum

10 0.113 0.214 497 3,366 0.328 0.720 3,507 12,840

20 0.149 0.199 288 559 730.500 7200 (1)* 14,149,241 138,751,079

30 720.224 7200 (1)* 8,396,481 83,955,421 2161.599 7200 (3)* 25,664,053 95,446,921

40 860.591 7200 (1)* 10,279,600 71,293,331 2880.523 7200 (4)* 23,758,292 101,234,212

50 2.043 16.534 13,333 119,461 1569.596 7200 (2)* 10,637,254 96,322,856

n

m=3 m=5

CPU Time Number of Nodes CPU Time Number of Nodes

45

5.3.2.1 Effects of the Problem Size Parameters

The tables in the Part 5.3.2 altogether reveal that the performance of the B&B

deteriorates with increases in the number of jobs (n) and increases in the number of

scenarios (m). The effect of m on the performance is more significant than that of n.

For example, as can be observed from Table 5.6, the average CPU times, increases

from 0.296 seconds to 69.763 seconds when n increases from 10 to 50 when m=5

for Set 2 instances with Plan 1 and 𝑝𝑖 ~𝑈[1,10]. However, consistency in CPU

times is not observed in some settings due to few instances. For example, as can be

observed from Table 5.5, the average CPU times decreases from 722.036 seconds

to 0.436 seconds when n increases from 20 to 50 for Set 1 instances and m=3 with

Plan 2 and 𝑝𝑖 ~𝑈[1,10]. When two computationally challenging instances that can

be accepted as outliers are excluded from calculations, the average CPU times of

remaining 8 instances become 0.131 seconds, which supports the statement that an

increase on the CPU time is observed when the number of jobs increases. Like

CPU times, the number of nodes generated also increases with the number of jobs.

There is no unsolved instance in two hours when n=10. However, the unsolved

instances are observed with the increase in the of number jobs, mostly when n=40

and 50. The increases in the CPU times and the number of nodes is due to the

inflated size of the branch and bound tree. The tree has n levels of depth.

On the other hand, the increases are not too significant, and the exponential nature

of the search is dispelled by powerful branching scheme and bounding

mechanisms. To check the performance for many more jobs, we solve instances

with 100, 150 and 200 jobs when there are 5 scenarios and 𝑝𝑖 ~𝑈[1,100]. We

report the results in Table 5.12 (for Set 1 and Plan 1), Table 5.13 (for Set 1 and

Plan 2), Table 5.14 (for Set 2 and Plan 1) and Table 5.15 (for Set 2 and Plan 2).

The tables give the average and maximum CPU times and average and maximum

number of nodes over 5 generated instances.

46

Table 5. 12 Computational Results for the Branch and Bound Algorithm for Set 1,

Plan 1, higher n values and 𝑝𝑖 ~𝑈[1,100].

n

m=5

CPU Time Number of Nodes

Average Maximum Average Maximum

100 0.983 1.206 5,085 5,565

150 3.935 4.159 11,255 11,326

200 6.249 7.116 20,070 20,101

Table 5.13 Computational Results for the Branch and Bound Algorithm for Set 1,

Plan 2, higher n values and 𝑝𝑖 ~𝑈[1,100].

n

m=5

CPU Time Number of Nodes

Average Maximum Average Maximum

100 2.063 2.385 5,042 5,050

150 2.995 3.123 11,326 11,326

200 23.147 88.293 31,192 75,735

Table 5. 14 Computational Results for the Branch and Bound Algorithm for Set 2,

Plan 1, higher n values and 𝑝𝑖 ~𝑈[1,100].

n

m=5

CPU Time Number of Nodes

Average Maximum Average Maximum

100 1.664 1.843 5,037 5,047

150 2.896 2.955 11,285 11,326

200 5.087 5.172 20,054 20,101

47

Table 5. 15 Computational Results for the Branch and Bound Algorithm for Set 2,

Plan 2, higher n values and 𝑝𝑖 ~𝑈[1,100].

n

m=5

CPU Time Number of Nodes

Average Maximum Average Maximum

100 1441.338 7200 (1)* 5572 7271

150 6.225 14.173 12630.6 17951

200 1444.133 7200 (1)* 20073.8 20101

*The figures in the parentheses give the number of unsolved instances in 2 hours

As can be noted from the tables, there are 2 unsolved instances out of 60 instances,

and the CPU times for small instances are mostly less than 20 seconds. We observe

that the number of jobs, n, affects the results quietly. The reason behind this

situation is that our algorithms find the best optimal solution that is generally equal

to the sum of the processing times of jobs with the powerful LBs easily. When the

best optimal solution is found, fathoming structure helps to eliminate worse

solutions.

Tables 5.4 through 5.11 show that the performance of the algorithm is better when

m is smaller. This holds over all problem sets. Note that, when n=20 and

 for Set 1 and Plan 2 instances, the maximum CPU time is 0.154

seconds when m=3 and 7200 seconds when m=5. The same behaviour also

observed for the average CPU times. For m=5 combination, there are 4 unsolved

instances in two hours. The same behaviour also observed for the average CPU

times. Another notable example is when n=20 and for Set 2 and Plan

2 instances. For this combination, the maximum CPU time is 2.483 seconds when

m=3 and there are 2 unsolved instances when m=5. Likewise, number of nodes

explored till the optimal solution is reached increases when m value changes from 3

to 5. For instance, the average number of nodes significantly increases from 485 to

48

59,304 when the m changes from 3 to 5 for n=30 in Table 5.10. This is due to the

superior performance of the lower bounds for small m. Our lower bounds find an

underestimate for each scenario and sum them to get the overall values. This

follows, their performance deteriorates as the number of underestimates in the sum,

increases.

5.3.2.2 Effects of the Processing Time Distributions

There are two sets for processing times, generated from a discrete uniform

distribution 𝑈[1,10] and 𝑈[1,100] respectively. Discussion of the results is given

as a bulleted list for each combination, and comments about results are made.

• Set 1 - Plan 1: There is not a significant difference or pattern in CPU times

and number of nodes generated between the results of 𝑝𝑖 ~𝑈[1,10] and

𝑝𝑖 ~𝑈[1,100] for the m=3. Otherwise, our algorithm performs better for the

𝑝𝑖 ~𝑈[1,10] when m=5. For a notable example, while average CPU times for

n=20, 𝑝𝑖 ~𝑈[1,100], Set 1 and Plan 1 is equal to 29.001 seconds, it is only 0.605

seconds for 𝑝𝑖 ~𝑈[1,10], approximately 15 times. In addition, 1 from 50 instances

are not solved in the termination limit, two hours for 𝑝𝑖 ~𝑈[1,100]. The same

behavior with CPU times is observed for the number of nodes generated in the

model.

• Set 1 – Plan 2: For this problem settings, there are many unsolved instances

for both scenarios’ number. By considering number of unsolved instances,

performance of the branch and bound algorithm deteriorates for 𝑝𝑖 ~𝑈[1,100] with

respect to 𝑝𝑖 ~𝑈[1,10].

• Set 2 – Plan 1: Results reveal that algorithm performs well in terms of

number of nodes and computation times for 𝑝𝑖 ~𝑈[1,100] when n is relatively

small for m=3. When n becomes taking higher values, results of 𝑝𝑖 ~𝑈[1,10] is

49

better than results of 𝑝𝑖 ~𝑈[1,100]. However, performance measures are very close

to ignore the results of this problem setting.

• Set 2 – Plan 2: Effects of processing time generation is more obvious for

Set 2 and Plan 2 than other problem settings. Branch and bound algorithm perform

poorer for 𝑝𝑖 ~𝑈[1,100] in terms of both of performance measures.

The instances with 𝑝𝑖 ~𝑈[1,10] produce very close objective function values for

different job sequences due to similarity of the processing times. This follows

solution found at the early levels of branching are close to the optimal expected

makespan values and the B&B does not have search many more nodes. When

𝑝𝑖 ~𝑈[1,100] the sequences are much apart from each other and optimal solution

can be reached after visiting many sequences having not so close expected

makespan values.

Another point that should be emphasized is that we observe that the B&B for

𝑝𝑖 ~𝑈[1,100] instances are more sensitive to the use of 𝐿𝐵2 In other words, 𝐿𝐵2

makes more significant eliminations when 𝑝𝑖 ~𝑈[1,100]. For example, the average

CPU time for m= 5, Set 2 and Plan 1 decreases from 4.513 seconds to 3.949

seconds for 𝑝𝑖 ~𝑈[1,10] while it reduces from 135.151 seconds to 11.668 seconds

for 𝑝𝑖 ~𝑈[1,100] in the Tables 5.20 and 5.22. This is due to the fact that 𝐿𝐵2 finds

fewer chances to fill the intervals thereby resulting in higher idle time values when

𝑝𝑖 ~𝑈[1,100]. Higher idle time values mean higher lower bounds, hence higher

chances for node eliminations.

5.3.2.3 Effects of the Breakdown Plans

Breakdown times are determined according to two plans, periodic breakdowns

named Plan 1 and random breakdowns named Plan 2. The performance of the

algorithm for CPU time is better when breakdown times are determined as periodic

with respect to random breakdown generally. For a notable example, the average

50

CPU times increase from 0.177 seconds to 4.126 seconds, approximately 40 times,

after changing the breakdown plan from periodic to random for Set 1 instance with

n=40, m=3 and 𝑝𝑖 ~𝑈[1,10]. However, we observe the opposite of this indication

where Plan 2 performs better than Plan 1. From Table 5.6 and Table 5.7, the

average CPU time of plan 2 is better than the average CPU time of plan 1 when

m=3, set 2 and n=40 and 50. However, these specific cases are insignificant

because the difference between the average CPU time of plans is not remarkable.

When we look at combinations in which n is greater than 50, the performance of

algorithms deteriorates as the plan changes from 1 to 2, excluding the only

combination of n=150, m=5 and set 1. To clarify, the average CPU time increases

from 6.249 seconds to 23.147 seconds when n=200, m=5 and Set 1. In addition, the

maximum CPU time shows the same behaviour that can be observed for the

average CPU time. The average CPU times of the algorithm are significantly better

for Plan 1 combinations than Plan 2 combinations, excluding the combinations of

n=20, Set 2 and 𝑝𝑖 ~𝑈[1,100]. The reason is that lower bound 2 (𝐿𝐵2) considers

minimizing the idle time, which is the difference between the breakdown time and

the start time of the job that is interrupted by the breakdown. It is better to have

more jobs that can be positioned in this idle time. The increment in the breakdown

time from one scenario to another is determined periodically in Plan 1 (as opposed

to being randomly determined in Plan 2), and hence is large enough to fill

efficiently, particularly when the number of scenarios is low. When the situation is

considered from this perspective, it becomes reasonable that combinations of Plan

1 perform better than the combinations of Plan 2.

There are big differences between breakdown plans in terms of number of unsolved

instances in two hours. Below is a table that shows the total number of unsolved

instances for 100 instances.

51

Table 5. 16 Distribution of unsolved instances to specific problem settings

Settings
Plan 1

&

m=3

Plan 1

&

m=5

Plan 2

&

m=3

Plan 2

&

m=5

Set 1 - 𝑝𝑖 ~[1,10] 0 0 1 6

Set 1 - 𝑝𝑖 ~[1,100] 0 1 5 12

Set 2 - 𝑝𝑖 ~[1,10] 0 0 0 3

Set 2 - 𝑝𝑖 ~[1,100] 0 0 2 10

As the results in Table 5.16 reveal, our algorithm performs well when breakdown

times are determined periodically for both m=3 and m=5. Particularly, the effect of

breakdown plan is observed as dramatically significant when the number of

scenario increases.

Another point that should be emphasized is related to the number of nodes

generated in the algorithm. The dramatic increase in the average and maximum

number of nodes in almost all combinations excluding the same cases that behave

differently than general cases while discussing average CPU time is observed. For

example, average number of nodes generated increase from 7,922 to 73,820

between plan 1 and plan 2 when 𝑝𝑖 ~𝑈[1,10] n=20, m=5 and Set 1. For the cases

that involve unsolved instances, this difference becomes huge. Therefore, Plan 2

performs worse than Plan 1 with respect to the number of nodes.

It can be summarized that breakdown plans have significant effects on the results

of our algorithm in terms of our performance measures and Plan 1 performs well

with respect to Plan 2 in our algorithm.

5.3.2.4 Effects of the Scenario Probabilities

There are two sets for the probability of scenarios. Set 1 defines the case where all

scenarios are equally likely to occur, and Set 2 refers to the case where the later

52

breakdowns are more likely to occur. Our results show that CPU times are slightly

higher for Set 2 in various combinations. However, almost all increases are

negligible. We have a similar observation for the number of nodes and for the

number of unsolved instances.

In the implementation of our lower bounds, each scenario is considered separately.

A lower bound on the makespan is obtained for each scenario, and the probability

values only affect the expected objective value. Therefore, the guidance of the

bounds and the fathoming structure remains unchanged and the scenario

probabilities do not have notable impact on the performance of algorithm.

5.3.2.5 Effects of the Lower Bounds

In this section, we discuss the effects of lower bounds on the performance of the

proposed branch and bound algorithm. To see the effects of the lower bounds on

the performance of the branch and bound algorithm, we compare the algorithm that

uses both lower bounds and report the results in Tables 5.17 and 5.18, that tabulates

the CPU times and the number of nodes for n=10.

53

Table 5. 17 Results of Performance Measure when LBs are not used for n=10

Job Scenario Set Plan

CPU Time Number of Nodes

Average Maximum Average Maximum

Without LBs

10 3

1
1 3.837 6.581 662,574 1,193,225

2 2.811 4.727 437,691 727,092

2
1 2.967 3.762 678,120 919,323

2 2.705 4.667 612,289 1,184,510

10 5

1
1 5.276 7.908 862,217 1,342,271

2 4.775 7.492 773,654 1,298,581

2
1 6.462 12.262 1,454,319 2,926,585

2 4.295 10.677 908,034 2,641,093

Table 5. 18 Results of Performance Measure when LBs are used for n=10

Job Scenario Set Plan

CPU Time Number of Nodes

Average Maximum Average Maximum

With LBs

10 3

1
1 0.053 0.102 500 1,526

2 0.059 0.231 1,639 8,325

2
1 0.132 0.174 825 1,730

2 0.113 0.214 497 3,366

10 5

1
1 0.130 0.201 1,366 2,830

2 0.105 0.205 2,164 6,422

2
1 0.304 0.395 2,530 6,154

2 0.328 0.720 3,507 12,840

54

Table 5.17 and 5.18 reveals that the number of nodes generated, and the CPU time

improve significantly when the lower bounds are incorporated. The effect of the

lower bounds is more significant when there are more scenarios. For example, the

average number of nodes for m=3, Set 2 and Plan 2 is 4,967 and 612,289 when the

lower bounds are used and they are not used, respectively. In addition to m=3,

using the lower bounds decreases the number of nodes from 908,034 to 3,507 for

the same combination when m=5. This strong power of the lower bounds dispels

the exponential nature of the search. The same inferences as the number of nodes

generated can be made for the CPU times.

To show the effect of the stronger lower bound, i.e., 𝐿𝐵2 we design two branch and

bound algorithms: one that uses 𝐿𝐵2 and does not use 𝐿𝐵2. Table 5.19 through

Table 5.22 report the performance results. Tables 5.19 and 5.20 show the number

of unsolved instances and CPU times and number of nodes respectively for

𝑝𝑖 ~𝑈[1,10]. Tables 5.21 and 5.22 are the respective results for 𝑝𝑖 ~𝑈[1,100]. It is

also noted that Tables 5.19 through 5.22 are for n=20.

Table 5. 19 The number of unsolved instances when 𝑝𝑖 ~𝑈[1,10]

Job (n)
Scenario

(m)
Set Plan

Number of Unsolved

Instances (from 10)

With 𝑳𝑩𝟐 W/o 𝑳𝑩𝟐

20

3

1 1 0 0

1 2 1 1

2 1 0 0

2 2 0 1

5

1 1 0 0

1 2 0 1

2 1 0 0

2 2 2 2

55

Table 5. 20 The CPU times and number of nodes when 𝑝𝑖 ~𝑈[1,10]

m Set Plan Case
CPU Time Number of Nodes

Average Maximum Average Maximum

3

1

1
With 𝐿𝐵2 0.033 0.042 210 211

W/o 𝐿𝐵2 0.180 0.363 999 6,146

2
With 𝐿𝐵2 2.263 19.315 118,571 1,061,703

W/o 𝐿𝐵2 3.713 31.816 328,027 2,913,640

2

1
With 𝐿𝐵2 0.220 0.404 569 3,668

W/o 𝐿𝐵2 0.407 1.470 14,605 94,026

2
With 𝐿𝐵2 0.407 2.483 7,686 72,036

W/o 𝐿𝐵2 720.626 7200.000 47,065 398,560

5

1

1
With 𝐿𝐵2 0.605 3.038 7,922 39,860

W/o 𝐿𝐵2 16.220 136.228 1,033,945 8,541,931

2
With 𝐿𝐵2 2.666 24.904 73,820 728,869

W/o 𝐿𝐵2 753.219 7200.000 2,534,953 20,599,538

2

1
With 𝐿𝐵2 0.534 3.072 5,806 48,618

W/o 𝐿𝐵2 2.151 10.613 147,883 849,672

2
With 𝐿𝐵2 3.949 13.444 65,725 296,081

W/o 𝐿𝐵2 4.513 16.039 225,608 863,181

56

Table 5. 21 The number of unsolved instances when 𝑝𝑖 ~𝑈[1,100]

Job (n)
Scenario

(m)
Set Plan

Number of Unsolved

Instances (from 10)

With 𝑳𝑩𝟐 W/o 𝑳𝑩𝟐

20

3

1 1 0 0

1 2 0 0

2 1 0 0

2 2 0 0

5

1 1 0 0

1 2 3 5

2 1 0 2

2 2 1 1

Table 5. 22 The CPU times and number of nodes when 𝑝𝑖 ~𝑈[1,100]

m Set Plan Case
CPU Time Number of Nodes

Average Maximum Average Maximum

3

1

1
With 𝐿𝐵2 0.048 0.072 339 676

W/o 𝐿𝐵2 0.567 1.994 23,327 105,171

2
With 𝐿𝐵2 0.068 0.154 612 2,806

W/o 𝐿𝐵2 7.870 66.669 760,375 6,664,623

2

1
With 𝐿𝐵2 0.264 1.334 2,645 22,369

W/o 𝐿𝐵2 1.674 8.855 70,113 520,678

2
With 𝐿𝐵2 0.149 0.199 288 559

W/o 𝐿𝐵2 0.334 0.529 3,705 8,961

5

1

1
With 𝐿𝐵2 29.001 216.975 648,147 5,040,425

W/o 𝐿𝐵2 377.049 3121.483 15,746,473 113,678,551

2
With 𝐿𝐵2 268.532 1677.877 1,064,552 5,130,422

W/o 𝐿𝐵2 2100.014 7200.000 2,539,918 11,584,163

2

1
With 𝐿𝐵2 834.931 4876.442 10,138,230 54,407,771

W/o 𝐿𝐵2 1577.367 7200.000 10,521,848 52,246,240

2
With 𝐿𝐵2 11.668 64.020 304,592 1,918,892

W/o 𝐿𝐵2 135.151 836.731 9,997,262 57,940,943

57

Note from Table 5.19 that the number of unsolved instances reduces from 5 to 3

with the use of 𝐿𝐵2 when 𝑝𝑖 ~𝑈[1,10]. Table 5.20 indicates that the number of

nodes and the CPU times reduce drastically with the use of 𝐿𝐵2 when 𝑝𝑖 ~𝑈[1,10]

For example, 𝐿𝐵2 reduces the CPU times from 16.220 seconds to 0.605 seconds

when m is equal to 5 for set 1 and plan 1. Meanwhile, average number of nodes

decreases from 1,033,945 to 7,922 with the contribution of 𝐿𝐵2 for the same

combinations stated previously.

The similar results hold for 𝑝𝑖 ~𝑈[1,100] . Table 5.21 reveals that 𝐿𝐵2 reduces the

number of unsolved instances from 8 to 5. With Table 5.22, it is obvious that the

CPU times and the number of nodes reduce significantly when 𝐿𝐵2 is used. For set

1 and plan 1, the average CPU times reduce from 0.567 to 0.048 seconds when

there are 3 scenarios and from 377.049 to 29.001 seconds when there are 5

scenarios. Moreover, average number of nodes decreases from 23,327 to 339 for

m=3 and 15,746,473 to 648,147 with the contribution of 𝐿𝐵2 for the same

combinations stated previously.

The significant contribution of 𝐿𝐵2 is due to the difference between 𝐿𝐵1 and 𝐿𝐵2 in

terms of handling the unsequenced jobs. In 𝐿𝐵1, the sum of processing times of

unsequenced jobs are included in the bound without considering the breakdown

structure. In 𝐿𝐵2, on the other hand, the breakdown structure is considered when

computing the upper bound on the number of jobs that can be processed before the

breakdown, which is then used in computing the lower bound on the makespan.

Thus, solution found at the early levels of branching are close to the optimal

expected makespan.

5.3.2.6 Performance of the First Feasible Solution found by the BAB

We finally investigate the performance of the first feasible solution found by the

B&B. We select 60 instances as follows.

58

Table 5. 23 Number of instances (first feasible solution = optimal solution) for

different problem settings

Number of Jobs Problem Settings
Number of Instances (First Feasible

Solution = Optimal Solution)

100

Set 1 – Plan 1 0

Set 1 – Plan 2 0

Set 2 – Plan 1 0

Set 2 – Plan 2 1*

150

Set 1 – Plan 1 0

Set 1 – Plan 2 0

Set 2 – Plan 1 0

Set 2 – Plan 2 1

200

Set 1 – Plan 1 0

Set 1 – Plan 2 1

Set 2 – Plan 1 0

Set 2 – Plan 2 0*

*There is 1 unsolved instance out of 5 instances in this problem setting.

Table 5. 24 Deviations for instances that first feasible solution is not equal to

optimal solution

Instances Objective Value of the

First Feasible Solution

(OVFFS) (seconds)

Optimal

Objective Value

(OOV) (seconds)

Deviations

((OVFFS –

OOV) / OOV)

Instance 1 5215.8 5214.0 0.030 %

Instance 2 7925.4 7925.0 0.005 %

Instance 3 9546.8 9540.0 0.070 %

59

We find that 58 out of 60 instances could be solved in our termination limit of 2

hours. The results have revealed that in 55 out of 58 instances, the first feasible

solution turned out to be optimal. For the other 3 solved instances, the deviations of

the objective value of the first feasible solution from the optimal objective value

are 0.03%, 0.005% and 0.07%, i.e., the deviations are negligible.

5.3.3 Expected Value Problem and the Value of the Stochastic Solution

In this section, we first report and discuss the VSS = EEV – SP values based on the

smallest-sized problem instances (n = 10), where SP values are obtained by solving

the SP model.

Table 5. 25 VSS values when 𝑝𝑖~𝑈[1,100] for n=10

n m
Probability

(1=Equal, 2=Later)

EEV-SP

Average Maximum

10

3
1 13.400 22.001

2 14.864 24.003

5
1 19.740 33.400

2 14.747 22.883

Note from Table 5.25 that average EEV-SP values are between 13.400 and 19.740

for different combinations. Hence, when there are 10 jobs, the improvement in the

expected makespan value is 15.68 on average, which indicates the benefit of using

a stochastic program instead of a deterministic approach.

VSS values are calculated by taking an average of the 5 instances for the larger-

sized problem instances (n = 50 and n = 100) and are reported in Tables 5.26 and

5.27. Note that, SP values are obtained by using the proposed B&B algorithm for

these instances. For EVP values, we utilize the same approach used for the smaller-

sized instances, which is described in Part 3.5. Remember that we can further

simplify the EVP by eliminating the sequencing decisions, and this would result in

60

a knapsack problem. After determining which jobs are processed before the

expected breakdown by solving this model, SPT is used to sequence the jobs in

each group, and the expected makespan is computed for the generated sequence.

Table 5. 26 VSS values for n=50, m=5 and 𝑝𝑖 ~𝑈[1,100]

Problem Settings

Average value of VSS

 (𝑽𝑺𝑺 = 𝒛𝑬𝑬𝑽 − 𝒛𝑺𝑷
∗)

(seconds)

Set 1 - Plan 1 12.76

Set 1 - Plan 2 22.12

Set 2 - Plan 1 22.31

Set 2 - Plan 2 21.60

Table 5. 27 VSS values for n=100, m=5 and 𝑝𝑖 ~𝑈[1,100]

Problem Settings

Average value of VSS

 (𝑽𝑺𝑺 = 𝒛𝑬𝑬𝑽 − 𝒛𝑺𝑷
∗)

(seconds)

Set 1 - Plan 1 21.20

Set 1 - Plan 2 23.84

Set 2 - Plan 1 23.56

Set 2 - Plan 2* 34.88

* 4 instances are considered as one instance is not solved in the termination limit.

VSS represents the expected improvement in the objective function as a result of

solving the stochastic model (using the B&B algorithm) instead of a deterministic

model, the knapsack model for this case. Improvement values range between 12.76

and 22.31 for n=50 and between 21.20 and 34.88 for n=100. It can be concluded

that the value of solving a stochastic model rather than a deterministic one becomes

higher as the number of jobs (n) increases.

61

Table 5. 28 VSS values for n=50, m=3 and 𝑝𝑖 ~𝑈[1,100]

Problem Settings

Average value of VSS

 (𝑽𝑺𝑺 = 𝒛𝑬𝑬𝑽 − 𝒛𝑺𝑷
∗)

(seconds)

Set 1 - Plan 1 6.47

Set 1 - Plan 2 21.06

Set 2 - Plan 1 20.06

Set 2 - Plan 2 20.07

We also investigated the effect of the number of scenarios (m) on the VSS values.

We report the VSS values for n = 50 and 𝑚 = 3 (i.e., for a smaller number of

scenarios) in Table 5.28. When the values in Tables 5.26 and 5.28 are compared, it

is observed that VSS is higher when more scenarios are used to capture the

uncertainty.

Table 5. 29 VSS values for n=50, m=5 and 𝑝𝑖 ~𝑈[1,10]

Problem Settings

Average value of VSS

 (𝑽𝑺𝑺 = 𝒛𝑬𝑬𝑽 − 𝒛𝑺𝑷
∗)

(seconds)

Set 1 - Plan 1 1.60

Set 1 - Plan 2 2.28

Set 2 - Plan 1 2.43

Set 2 - Plan 2 2.07

To observe the effect of processing times on the VSS values, we executed

experiments for n=50, m=5 and 𝑝𝑖 ~𝑈[1,10]. We report the VSS values for this set

of experiments in Table 5.29. From the comparison of the values in Tables 5.26

and 5.29, we can conclude that the instances with 𝑝𝑖 ~𝑈[1,10] produce very close

62

values for different job sequences due to the similarity of the processing times.

Therefore, the VSS values are higher for 𝑝𝑖 ~𝑈[1,100] setting.

63

CHAPTER 6

6 CONCLUSION

In this study, we consider a single machine scheduling problem with random

breakdowns. We assume that there is a single breakdown with an unknown

occurrence time. The occurrence times are stochastically known with probabilities.

Each occurrence time is referred to as a scenario. We aim to find a sequence of jobs

to maximize the expected makespan. We propose two stochastic programming

models one of which takes precedence over the jobs and the other takes the job

position as the main decision.

To assess the value of using a stochastic programming approach, we find the

expected value solution and evaluate its expected makespan value. The expected

value solution is found through a single knapsack model. We observe that there is

difference between the optimal objective function value of a stochastic program

and the expected makespan of the expected solution, which justifies the use of a

stochastic program.

Our experiments have revealed that the precedence based model performs superior

to the position model, and it can solve instances with up to 10 jobs.

To handle the medium to large sized problem instances, we propose a branch and

bound algorithm. We provide an efficient branching scheme that avoids the

repetition of many partial solutions. We improve the performance of the branch and

bound algorithm with two powerful lower bounding approaches. Our lower bounds

find a lower bound for each scenario realization and weigh the scenario lower

bounds by their occurrence probabilities.

64

Our extensive computational results with up to 200 jobs and 5 scenarios have

revealed the satisfactory behavior of the branch and bound algorithm. We observe a

more dominant effect of the number of scenarios than the number of jobs, since its

impact is not only on the problem size but also on the length of the period before

the breakdown. The exponential nature of the search is dispelled significantly

through our efficient branching scheme and lower bounding schemes. Most of the

instances would remain unsolved for two hours in the absence of those

mechanisms. We observe the significance of the maintenance patterns and

processing time distributions on the performance of the algorithm. The instances

with periodic maintenance and low processing time variability are the easiest to

solve.

To the best of our knowledge, we propose the first stochastic programming

approach to a single machine problem with uncertain breakdown times. We hope

that our promising results may trigger developments in the stochastic scheduling

area. Future research may consider the development of B&B based heuristic

approaches like filtered beam search algorithm that uses our branching scheme and

lower bounds. An extension of our study to more complex objective functions like

total flow time and total tardiness is another fruitful research area. Moreover, more

complex breakdown structures, like multiple breakdowns, are worth-studying.

65

7 REFERENCES

A comparative study on stochastic programming problems: Modeling ... (n.d.).

Retrieved August 21, 2022, from

https://www.researchgate.net/publication/338083207_ A_

comparative_study_on_Stochastic_Programming_Problems_modeling_and_a

pplications_in_real_life

Abdul Halim, N. N., Shariff, S. S., & Zahari, S. M. (2020). Single-Machine

Integrated Production Preventive Maintenance Scheduling: A Simheuristic

approach. MATEMATIKA, 36(2), 113–126.

Al-Khamis, T., & M’Hallah, R. (2011). A two-stage stochastic programming

model for the parallel machine scheduling problem with machine capacity.

Computers & Operations Research, 38(12), 1747–1759.

Atakan, S., Bülbül, K., & Noyan, N. (2016). Minimizing value-at-risk in single

machine scheduling. Annals of Operations Research, 248(1-2), 25–73.

Batun, S., & Azizoğlu, M. (2009). Single Machine scheduling with preventive

maintenances. International Journal of Production Research, 47(7), 1753–

1771.

Birge, J.R., and Louveaux, F., (2011), “Introduction to Stochastic Programming”.

Springer, New York.

Cassady, C. R., & Kutanoglu, E. (2005). Integrating Preventive Maintenance

Planning and production scheduling for a single machine. IEEE Transactions

on Reliability, 54(2), 304–309.

https://www.researchgate.net/

66

Chen, W. (2009). Minimizing number of tardy jobs on a single machine subject to

periodic maintenance. Omega, 37(3), 591–599.

Chen, Y., Huang, C., Chou, F. D., & Huang, S. (2020). Single‐machine scheduling

problem with flexible maintenance and non‐resumable jobs to minimise

makespan. IET Collaborative Intelligent Manufacturing, 2(4), 174–181.

Escudero, L. F., Garín, A., Merino, M., & Pérez, G. (2007). The value of the

stochastic solution in multistage problems. TOP, 15(1), 48–64.

Hariga, M. (1994). A deterministic maintenance‐scheduling problem for a group

ofnon‐identical machines. International Journal of Operations & Production

Management, 14(7), 27–36.

Liu, M., Wang, S., Chu, C., & Chu, F. (2015). An improved exact algorithm for

single-machine scheduling to minimise the number of tardy jobs with

periodic maintenance. International Journal of Production Research, 54(12),

3591–3602.

Low, C., Ji, M., Hsu, C.-J., & Su, C.-T. (2010). Minimizing the makespan in a

single machine scheduling problems with flexible and periodic maintenance.

Applied Mathematical Modelling, 34(2), 334–342.

Ozcelik, F., Ertem, M., & Saraç, T. (2021). A stochastic approach for the single-

machine scheduling problem to minimize total expected cost with client-

dependent tardiness costs. Engineering Optimization, 54(7), 1178–1192.

Pan, E., Liao, W., & Xi, L. (2010). Single-machine-based production scheduling

model Integrated Preventive Maintenance Planning. The International

Journal of Advanced Manufacturing Technology, 50(1-4), 365–375.

67

van den Akker, M., & Hoogeveen, H. (2007). Minimizing the number of late jobs

in a stochastic setting using a chance constraint. Journal of Scheduling, 11(1),

59–69.

van den Akker, M., Hoogeveen, H., & Stoef, J. (2018). Combining two-stage

stochastic programming and recoverable robustness to minimize the number

of late jobs in the case of Uncertain Processing Times. Journal of Scheduling,

21(6), 607–617.

Wang, S., & Liu, M. (2013). A branch and bound algorithm for single-machine

production scheduling integrated with Preventive Maintenance Planning.

International Journal of Production Research, 51(3), 847–868.

