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ABSTRACT 

 

A STOCHASTIC PROGRAMMING APPROACH TO THE SINGLE 

MACHINE MAKESPAN PROBLEM WITH RANDOM BREAKDOWNS 

 

 

 

Gürel, Tarık 

Master of Science, Industrial Engineering 

Supervisor : Prof. Dr. Meral Azizoğlu 

Co-Supervisor: Assist. Prof. Dr. Sakine Batun 

 

 

December 2022, 67 pages 

 

 

In this thesis, we consider a single machine scheduling problem with random 

breakdowns. There is a single breakdown whose occurrence times follow a discrete 

distribution with known probabilities. We aim to minimize the expected makespan 

and propose a stochastic programming approach. 

We propose two stage stochastic programming models and a branch and bound 

algorithm. We enhance the performance of the branch and bound algorithm with an 

efficient branching scheme and powerful lower bounds. 

The results of our computational experiments have shown that the stochastic 

programming models can solve small-sized instances and the branch and bound 

algorithm is capable of solving medium sized instances in reasonable times. 

 

Keywords: Single Machine Sequencing, Makespan, Stochastic Programming 

Models, Branch and Bound Algorithm, Random Breakdown 
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ÖZ 

 

STOKASTİK PROGRAMLAMA YAKLAŞIMI İLE RASSAL ARIZA 

ETKİSİNDE TEK MAKİNE ÇİZELGELEME 

 

 

 

Gürel, Tarık 

Yüksek Lisans, Endüstri Mühendisliği 

Tez Yöneticisi: Prof. Dr. Meral Azizoğlu 

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi Sakine Batun 

 

 

Aralık 2022, 67 sayfa 

 

Bu tezde, rassal arıza varlığında tek makinenin çizelgeleme problemini ele 

almaktayız. Gerçekleşme zamanı bilinen olasılık altında ayrık dağılım özelliği 

gösteren bir arıza mevcuttur. Beklenen son işin tamamlanma süresini azaltmayı 

amaçlamaktayız ve bunun için stokastik programlamı yaklaşımı önermekteyiz. 

Belirtilen amaç doğrultusunda iki seviyeli stokastik programlama modelleri ve 

dal/sınır algoritması önermekteyiz. Etkili dallanma planı ve güçlü alt sınırlar ile 

dal/sınır algoritmasının performansını arttırmaktayız. 

Hesaplamalarımızın sonuçları stokastik programlama modellerimizn küçük ölçekli 

problemlerde, dal-sınır algoritmasının ise orta ve büyük ölçekli problemlerde 

makul sürelerde çalıştığını göstermiştir. 

 

Anahtar Kelimeler: Tek Makine Sıralaması, Son İş Tamamlanma Süresi, Stokastik 

Programlama Modelleri, Dal-Sınır Algoritması, Rassal Arıza 
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CHAPTER 1  

1 INTRODUCTION  

In this study, we consider a single machine makespan problem with uncertain 

breakdowns. A single machine is an important concern for many manufacturers 

who have to operate a single prestigious machine like a robot or a CNC machine. 

Moreover, a single machine may represent a collection of many machines or a 

bottleneck machine.  

The maximum flow time overall jobs, so called makespan, is an important concern 

of manufacturing, in particular when all jobs in a lot should wait for each other to 

be moved from the operation shop floor.  The breakdowns decrease the efficiency 

of the manufacturing operations through manufacturing cost increases, quality 

deterioration, and makespan increases.  

The scheduling theory mostly assumes that the resources are continuously available 

to process the operation and there are no breakdowns. This assumption may 

contradict the practical applications where the machines are to be maintained at 

some defined times once they break down. A former situation is a deterministic 

event whereas the latter case is a random event that occurs in stochastic 

environments. 

Random breakdowns are relatively less studied in stochastic scheduling literature. 

The majority of the literature on stochastic scheduling assumes that uncertainty 

arises due to the processing times. The studies which deal with breakdowns assume 

that the breakdowns are governed by known probability distribution functions and 

propose optimal policies to minimize the expected performance measure.  
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Recognizing this gap in the literature, we consider a single breakdown whose 

occurrence time follows a discrete distribution with known probabilities. During 

the short planning horizon of a scheduling environment, it is realistic to make such 

an assumption once a machine breaks down and thereafter maintained, it will not 

re-break down till the completion of the last job.  We call any occurrence event a 

scenario and assume that there are limited scenarios. Each scenario that is defined 

by a time point may be representative of the time interval that it is in.  We aim to 

minimize the expected makespan which is the collection of all makespan values 

weighted by their probabilities. 

We propose two stochastic programming models one of which is precedence based 

and the other is position based. The models are mixed integer linear programs with 

a lot of binary variables, hence their applications are limited to small-sized problem 

instances. For medium to large-sized problem instances, we propose a branch and 

bound algorithm whose efficiency is enhanced by an efficient branching scheme 

and powerful lower bounding mechanisms. 

To sum up, we contribute to the existing literature in the following two ways: 

i. proposing the first stochastic programming model for a scheduling 

problem with random breakdowns. 

ii. proposing the first optimization approach (branch and bound algorithm) 

to a single machine stochastic programming model 

The rest of the thesis is organized as follows. In Chapter 2, we review the literature 

on deterministic problems with scheduled breakdowns and stochastic problems 

with uncertain parameters. In addition, we discuss the stochastic programming 

approaches for machine scheduling problems. Chapter 3 defines the problem, gives 

the stochastic programming models, and presents the models used to find the value 

of the stochastic solution. In Chapter 4, we present the branch and bound algorithm 

along with the mechanisms used to enhance its efficiency. Chapter 5 discusses our 
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computational experiments, and we conclude the study in Chapter 6, where the 

main conclusions and future research directions are stated. 
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CHAPTER 2  

2 LITERATURE REVIEW 

Throughout the years, there have been many studies about scheduling with 

preventive maintenance all over the world and one of the reasons why it can be 

such a popular study area is that lots of variants as study topics can be derived by 

changing the problem environment. Number of machines, scheduling methods, 

maintenance strategies and objectives are examples of what the problem 

environment is made up of. 

 

The majority of the studies carried out in the earlier years is related to deterministic 

problems. Data corresponding to processing time, breakdown time and so on are 

already known, and solution can be found by using the data from existing 

algorithms and solution methods. However, this situation does not reflect real life 

cases. Particularly in the manufacturing sector, companies regularly face 

maintenance activities (corrective maintenance) performed after random 

breakdowns. These events have played a vital role in the emerging of studies 

focused on stochastic problems.  

We first review the maintenance literature and then the stochastic programming 

studies for all scheduling environments. 

2.1 Maintenance Studies 

We review the maintenance literature under two headings: deterministic and 

stochastic maintenance 
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2.1.1 Deterministic Maintenance  

Chen (2009) carried out study about a single-machine scheduling problem with 

periodic maintenance where objective is minimizing number of tardy jobs. There 

were several maintenance periods in which an amount of time was required for the 

performance. In the lights of these information, Chen (2009) studied how to 

schedule for jobs and maintenance period. A heuristic algorithm based on Moore-

Hodgson’s algorithm was developed to obtain near-optimal schedule. To decide 

whether the developed heuristic well performed or not, branch and bound method 

also implemented and comparison was made. Liu et al. (2015) addressed the same 

problem that has been studied by Chen (2009). They suggested an improved branch 

and bound algorithm that involves new effective dominance rules and strong lower 

bounds. Low et al. (2010) dealt with single machine scheduling problem under the 

deterministic environment aiming to minimize the makespan. Machine is not 

available at all time due to periodic maintenance activities scheduled after a 

periodic time interval. They focused on heuristic methods to solve NP-hard 

problem, and decreasing order with first fit, one of the proposed heuristics, 

performed well according to computational results. Chen et al. (2020) also 

considered single machine scheduling problem with preventative maintenance to 

minimize the makespan in which jobs were non-resumable, and maintenance 

intervals were flexible. They tried to solve this problem by utilizing from mixed-

integer programming models (MIP) and branch and bound method (B&B) initially. 

They concluded that these methods were satisfactory for the small size problems, 

and B&B heavily dominated the MIP. Then, four different heuristics were designed 

to reach near-optimal solution quickly for the large size problem. The result of their 

experiments revealed the satisfactory performance of heuristics, especially 

Minimum Waste and Lower Bound Index. Batun and Azizoğlu (2009) worked on 

total flow time single machine problem with preventative maintenance. In this 

problem, the assumption is that jobs must be restarted when disrupted by the 
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maintenance activities. Another assumption is that starting time and duration of 

these activities are already known. Under these conditions, they proposed Branch 

and Bound as a solution method. Their computations showed that Branch and 

Bound method performed well in a large sized problem, up to 80 jobs. 

 

Hariga (1994) considered the maintenance problem with m non-identical machines. 

The objective is to determine cyclic overhaul schedule for a manufacturing system. 

Hariga (1994) also made some assumptions according to the impact of 

maintenances (overhauls). While major overhauls bring the machines to new 

conditions (operating age becomes zero), minor overhauls only restore machines to 

specified operating conditions. Hariga (1994) was developed a heuristic algorithm 

to determine overhaul schedule instead of optimization model since solving the 

latter was more difficult. Also, the computations yielded good results for the 

heuristic algorithm. 

2.1.2 Stochastic Maintenance  

Cassady and Kutanoglu (2005) made a study about single machine scheduling 

problem by incorporating preventative maintenance to minimize the total expected 

weighted completion time. They considered that machines are subject to failures, 

and the failure rate is determined by using the Weibull distribution. They proposed 

an optimization model to solve this type of problem, and they compared the 

performance of integrated scheduling with non-integrated scheduling. Pan et al. 

(2010) considered similar problem settings to Cassady and Kutanoglu (2005), but 

their objective was minimizing the maximum weighted tardiness. They proposed 

an integrated scheduling model that includes production scheduling and preventive 

maintenance to deal with this type of problem. Wang and Liu (2013) investigated 

single machine production scheduling with preventative maintenance planning, 

where objective is minimizing total weighted completion time of jobs. Machine 
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breakdowns occur, and the time to breakdown is subject to a Weibull probability 

distribution. Branch and bound was used as solution approach whose efficiency is 

enhanced with powerful upper and lower bounds. After these efforts, they solved 

problems with up to 18 jobs in a reasonable time. Halim et al. (2020) proposed a 

hybrid method that is a combination of a genetic algorithm with a Monte Carlo 

simulation method for solving single machine scheduling with random machine 

breakdowns where the objective is integrating the production and preventative 

maintenance to minimize the total completion time. Firstly, they utilized simulation 

to predict the breakdown time, and the genetic algorithm was used through easy to 

implement for scheduling the jobs. 

2.2 Stochastic Programming for Machine Scheduling Problems  

van den Akker et al. (2018) considered a stochastic single machine environment 

where changes in processing times of jobs are due to disturbance. Their approach 

was to propose recovery actions to be implemented to reach optimal solution for 

minimizing number of late jobs when a change occurs. To achieve that, they 

proposed to use a combination of two stage stochastic programming and 

recoverable robustness. Several algorithms, dynamic programming, branch and 

bound and branch and price, were used as solution methods for this problem. After 

computations, they concluded that dynamic programming was the worst method, 

and branching algorithms were better. In spite of the fact that there were no 

difference between branching methods, they proposed using branch and bound as it 

was easily implemented.  

Khamis and M’Hallal (2011) also utilized two stage stochastic programming, but 

problem environment was totally different. They dealt with the parallel machine 

scheduling problem in which due dates of jobs are uncertain, and their objective 

was to determine optimal machine capacities to maximize profit. They divided the 

model into two stages, the first stage and the second stage. While they determined 
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optimal capacities for each machine in the first stage, they tried to estimate profit 

with respect to determined capacities in the second stage.  To solve this problem, 

they combined ranking and selection procedure and used sample average 

approximation. Also, they used branch and bound method to solve the second stage 

of the problem.  

Özçelik et al. (2021) considered single machine scheduling problem with stochastic 

sequence dependent set-up times, where objective function is minimizing total 

expected cost that consists of set-up, tardiness and earliness cost. They develop a 

mathematical model that includes a combination of single machine scheduling with 

stochastic sequence-dependent setup time and cost function, however, could not 

find the optimal solution in CPLEX in a reasonable time. For this reason, they 

looked for heuristic and metaheuristic methods, and decided to use harmony search 

algorithm due to its great search ability and simplicity. Then, they proposed two 

stage stochastic programming model with harmony search heuristic to solve the 

large-sized problems.  

Atakan et al. (2016) studied value-at-risk minimization in single machine 

scheduling problems under unforeseeable conditions and parameters. They 

benefited from Lagrangian relaxation-based scenario decomposition method for 

obtaining lower bound, and proposed risk-averse stochastic programming model.  

van den Akker and Hoogeven (2008) considered single machine scheduling 

problems with stochastic processing times, to minimize the number of late jobs. 

They used a chance constraint to decide whether job is stochastically completed on 

time or late. A theorem was developed for different stochastic processing times 

distributions to convert stochastic problems to deterministic problems. They also 

scrutinized maximizing expected number of on time jobs. 
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CHAPTER 3  

3 PROBLEM DEFINITION AND FORMULATION 

In this chapter, we define our problem, give the basics of the stochastic 

programming approach and present two alternate stochastic programming models 

for the defined problem. We also report on the model used to assess the value of 

our stochastic programming approach. 

3.1 Problem Description 

We consider a single machine scheduling model with n jobs. Task i has 

deterministic processing time of 𝑝𝑖 time units and the machine is subject to a single 

breakdown whose occurrence time is probabilistic.  The jobs are indexed in non-

decreasing order of processing times: if 𝑗 > 𝑖 , then 𝑝𝑗 ≥ 𝑝𝑖. 

There are m possible times of the breakdown each of which is referred to as a 

scenario. Scenario k is characterized by its breakdown time 𝑠𝑘, breakdown duration 

𝑑𝑘 and occurrence probability 𝜋𝑘. 

We make the following additional assumptions: 

- All jobs are available at time zero and most one job can be processed at a 

time. 

- The jobs are non-resumable, i.e., they are restarted once interrupted by the 

breakdown. 

- The uncertainty in machine breakdown and repair durations is represented 

by a set of scenarios.  
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- The breakdown time for each scenario cannot be greater than the sum of 

jobs’ processing time. 

Our problem is to sequence the n jobs on a single machine to minimize the 

expected completion time of the last sequenced task, i.e., expected makespan. We 

express the expected makespan as ∑ 𝜋𝑘 ∗  𝐶𝑚𝑎𝑥,𝑘
𝑚
𝑘=1  where 𝐶𝑚𝑎𝑥,𝑘 is the 

completion time of the last job according to scenario k. Makespan is an important 

concern in batch manufacturing systems where the jobs arrive in lots and the next 

batch start after all jobs of the current batch is completed.  

3.2 Stochastic Programming (SP) Basics 

Stochastic programming is a mathematical program which includes problem 

parameters that are not known with certainty. Real world problems almost always 

involve stochastic parameters instead of fixed parameters known in advance. In 

stochastic programming, these parameters are estimated by using probability 

distributions. 

Two-stage stochastic programming (SP) framework is the simplest structure 

stochastic programming where the decision variables are divided into two groups 

as the first-stage and the second-stage decision variables. The first-stage decisions 

(𝒙) are made and implemented before the resolution of the uncertainty, whereas the 

implementation of the second-stage decision variables (𝒚) takes place after the 

resolution of the uncertainty, i.e., after the second-stage parameters (random vector 

𝝃) become known.  

Aligned with this structure, Birge (2011) states extensive form of two stage SP 

model as follows: 
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min 𝑐𝑇𝑥 +  𝐸𝜉𝑄(𝑥, 𝜉) 

s.t 

𝐴𝑥 = 𝑏 

𝑥 ≥ 0 

where 𝑄(𝑥, 𝜉) = min {𝑞𝑇𝑦 | 𝑊𝑦 = ℎ − 𝑇𝑥, 𝑦 ≥ 0}, and 𝜉 is the vector composed 

by the components of 𝑞𝑇 , ℎ𝑇, and T. In addition, 𝐸𝜉  denote mathematical 

expectation with respect to 𝜉. Also, W is assumed as fixed. 

3.3 Stochastic Programming Models 

In this section, we present two SP models that are precedence based and position 

based. 

3.3.1 Precedence Based Mixed Integer Linear Program 

The model forms the solution by using the precedence sequences of the jobs in the 

optimal solution. Hence we define our decision variable as an indicator variable 

that takes value 1 if a job precedes another task in the optimal solution. We 

hereafter refer to this model as 𝑆𝑃1. 

𝑆𝑃1 uses the following notation:   

Indices 

𝑖, 𝑗= task (job) indices, 1,…,n 

𝑘= scenario index, 1,…,m   

Parameters 

𝑝𝑖 = processing time of job i     i =1,…,n   



 

 

 

14 

 

 

𝜋𝑘 = occurrence probability of scenario k     k=1,…,m 

𝑠𝑘 = breakdown time of scenario k      k=1,…,m 

𝑀1𝑘 = an upper bound on the completion time in scenario k   k=1,…,m  

𝑀2𝑘 = an upper bound on the completion time in scenario k   k=1,…,m  

𝑀 = an upper bound on the subtour constraint   

𝑑𝑘 = breakdown duration in scenario k     k=1,…,m 

Decision Variables 

𝑥𝑖𝑗 = {
1 if job i precedes job 𝑗 (general precedence, not immediate precedence)
0 otherwise                                                                                                                     

 

where i, j=1,…,n 

𝑦𝑗𝑘 = {
1 if job 𝑗 is completed before breakdown in scenario 𝑘
0 otherwise                                                                                 

 

where j=1,…,n and k=1,…,m 

𝐶𝑚𝑎𝑥,𝑘 = makespan value in scenario 𝑘 where k=1,…,m   

𝐶𝑗 = 𝑑ummy completion time of job 𝑗 where j=1,…,n  

Mathematical Model 

Objective Function: min ∑ 𝜋𝑘 ∗ 𝐶𝑚𝑎𝑥,𝑘𝑘      (1) 

Subject to 

𝑥𝑖𝑗 + 𝑥𝑗𝑖 = 1                                                                         ∀𝑗 > 𝑖    (2) 

∑ 𝑝𝑖𝑥𝑖𝑗𝑖≠𝑗 + 𝑝𝑗 ≤ 𝑠𝑘 + 𝑀1𝑘(1 − 𝑦𝑗𝑘)                           ∀𝑗, 𝑘     (3) 

where 𝑀1𝑘 = ∑ (𝑝𝑗)𝑗 − 𝑠𝑘  

∑ 𝑝𝑖𝑥𝑖𝑗𝑖≠𝑗 + 𝑝𝑗 ≥ 𝑠𝑘 − 𝑀2𝑘(𝑦𝑗𝑘)                                   ∀𝑗, 𝑘   (4) 
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where 𝑀2𝑘 = 𝑠𝑘  

𝐶𝑚𝑎𝑥,𝑘 = (𝑠𝑘 + 𝑑𝑘) + ∑ 𝑝𝑗(1 − 𝑦𝑗𝑘)𝑗                            ∀𝑘: 𝑠𝑘 < ∑ 𝑝𝑗𝑗  (5) 

𝐶𝑗 ≥ 𝐶𝑖 + 𝑝𝑗 − 𝑀(1 − 𝑥𝑖𝑗)                                                ∀𝑗 ≠ 𝑖    (6) 

where 𝑀 = 2 ∑ 𝑝𝑗𝑗 + 𝑚𝑎𝑥𝑘 (𝑑𝑘) 

𝑥𝑖𝑗 ∈ {0,1}                                                                              ∀𝑗 ≠ 𝑖  (7) 

𝑦𝑗𝑘 ∈ {0,1}                                                                             ∀𝑗, 𝑘   (8) 

𝐶𝑗 ≥ 0                                                                                      ∀𝑗     (9) 

𝐶𝑚𝑎𝑥,𝑘 ≥ 0                                                                             ∀𝑘    (10) 

The objective function (1) corresponds to minimizing the expected makespan. The 

makespan values are calculated for each scenario separately, then, the values are 

multiplied by the occurrence probability of the scenario, 𝜋𝑘, and summed up. 

Constraint set (2) ensures that either 𝑖 precedes 𝑗 or 𝑗 precedes 𝑖, thus only one x 

variable for the same i and j values is equal to one. Constraint sets (3) and (4) are 

formulated to make sure that 𝑦𝑗𝑘 = 1 if 𝑗 is completed before 𝑠𝑘 and 𝑦𝑗𝑘 = 0 if 𝑗 is 

completed after 𝑠𝑘, respectively. Constraint set (5) computes the makespan for each 

scenario. This constraint is the sum of breakdown time, breakdown duration and 

the set of jobs that have been operated after the breakdown. Constraint (6) can be 

considered as subsequence elimination constraints. It makes sure that job j starts 

after job i completes if 𝑥𝑖𝑗 = 1. Note that 𝐶𝑗 variables do not represent the real 

completion times. Constraint sets (7) and (8) are the binary set restrictions on the 

variables. Constraint sets (9) and (10) ensure that variables take nonnegative 

values. 
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3.3.2 Position Based Mixed Integer Linear Program  

The model forms the solution by using the assignments of the jobs to the positions. 

Hence we define our decision variable as an indicator variable that takes value 1 if 

a job is assigned to a particular position. We keep the position assignments 

identical over all scenarios. We hereafter refer to the model as 𝑆𝑃2. 

𝑆𝑃2 uses the same parameters and indices with 𝑆𝑃1. Additionally, we define an 

index r such that: 𝑟 = {
1    before breakdown
2     after breakdown   

  

Decision Variables 

𝑥𝑗𝑡𝑟𝑘

= {
1 if job 𝑗 is assigned to position 𝑡 and completed {

before (𝑟 = 1)

after (𝑟 = 2)
}  the breakdown in scenario 𝑘

0 otherwise

 

where j=1,…,n, t=1,…,n, r=1,2 and k=1,…,m. 

𝐶𝑚𝑎𝑥,𝑘 = makespan value under scenario 𝑘 where k=1,…,m. 

Mathematical Model 

Objective Function: min ∑ 𝜋𝑘 ∗ 𝐶𝑚𝑎𝑥,𝑘𝑘      (11) 

Subject to 

∑ 𝑥𝑗𝑡𝑟𝑘𝑡,𝑟 = 1                                                                        ∀𝑗, 𝑘     (12) 

∑ 𝑥𝑗𝑡𝑟𝑘𝑗,𝑟 = 1                                                                      ∀𝑡, 𝑘     (13) 

∑ 𝑗 ∗ 𝑥𝑗𝑡𝑟𝑘𝑗,𝑟 = ∑ 𝑗 ∗ 𝑥𝑗𝑡𝑟(𝑘+1)𝑗,𝑟                                     ∀𝑡, 𝑘 < 𝑚     (14) 

∑ 𝑝𝑗𝑥𝑗𝑡1𝑘𝑗,𝑡 ≤ 𝑠𝑘                                                                ∀𝑘   (15) 

∑ 𝑥𝑗(𝑡+1)2𝑘𝑗 ≥ ∑ 𝑥𝑗𝑡2𝑘𝑗                                                     ∀𝑘, 𝑡 < 𝑛      (16) 

𝐶𝑚𝑎𝑥,𝑘 = 𝑠𝑘 + 𝑑𝑘 + ∑ 𝑝𝑗𝑥𝑗𝑡2𝑘𝑗,𝑡                                    ∀𝑘: 𝑠𝑘 < ∑ 𝑝𝑗𝑗     (17) 
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𝑥𝑗𝑡𝑟𝑘 ∈ {0,1}                                                                        ∀𝑗, 𝑡, 𝑟, 𝑘   (18) 

𝐶𝑚𝑎𝑥,𝑘 ≥ 0                                                                           ∀𝑘    (19) 

As in 𝑆𝑃1 the objective function (11) represents minimizing the expected 

makespan. 

Constraint set (12) ensures that each job is assigned to a position. Constraint set 

(13) guarantees that there is exactly one job in each position. Constraint set (14) 

forces the same sequence for all scenarios. Constraint set (15) is added for 

determining the set of jobs before the breakdown. It guarantees that summation of 

the processing times of the jobs completed before the breakdown does not exceed 

breakdown time.  Constraint set (16) is related to the proper use of the positions. It 

ensures that later positions are used after the breakdown. The constraint together 

with the Constraint set (13) ensures that earlier positions are used first before the 

breakdown. Constraint set (17) defines the makespan values. Constraint sets (18) 

and (19) are binary and nonnegativity constraints, respectively.  

3.4 An Example 

We illustrate the model solution through 10-job and 3-scenario instance whose data 

are tabulated below.  

Table 3. 1 Processing times of jobs in example 

i 1 2 3 4 5 6 7 8 9 10 

𝒑𝒊 5 12 19 26 41 49 53 72 78 95 
 

Table 3. 2 Breakdowns times and probabilities of an example 

k 1 2 3 

𝒔𝒌 100 200 300 

𝝅𝒌 0.2 0.3 0.5 
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The breakdown durations (i.e. 𝑑𝑘values) are assumed to be zero. 

Using the CPLEX solver, the GAMS software gives the following optimal job 

sequence: 

3-4-2-5-7-6-1-10-9-8 

• If scenario 1 occurs, the schedule will be implemented as:  

Table 3. 3 Proposed schedule that shows the breakdown of scenario 1 

19 45 57 98  153 202 207 302 380 452 

3 4 2 5 7 7 6 1 10 9 8 

 

As the jobs are nonresumable, 2 units of job 7 before the breakdown are wasted 

(shown by a shaded box) and job 7 restarts after the breakdown and processed for 

53 units. The resulting 𝐶𝑚𝑎𝑥 value, i.e, 𝐶𝑚𝑎𝑥,1 is calculated as: 

𝐶𝑚𝑎𝑥,1 = 100 + 𝑝7 + 𝑝6 + 𝑝1 + 𝑝10 + 𝑝9 + 𝑝8 = 452 

• If scenario 2 occurs, the schedule will be implemented as:  

Table 3. 4 Proposed schedule that shows the breakdown of scenario 2 

19 45 57 98 151 200 205 300 378 450 

3 4 2 5 7 6 1 10 9 8 

 

𝑠2 coincides with the completion of time Job 6, hence there will no idle time. 

𝐶𝑚𝑎𝑥,2 value is then the sum of the processing times of all jobs, i.e., 

𝐶𝑚𝑎𝑥,2 =  𝑝3 + 𝑝4 + 𝑝2 + 𝑝5 + 𝑝7 + 𝑝6 + 𝑝1 + 𝑝10 + 𝑝9 + 𝑝8 = 450 

• If scenario 3 occurs, the schedule will be implemented as:  
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Table 3. 5 Proposed schedule that shows the breakdown of scenario 3 

19 45 57 98 151 200 205 300 378 450 

3 4 2 5 7 6 1 10 9 8 

 

As in scenario 2, in scenario 3, the breakdown time coincides with a job 

completion, hence 𝐶𝑚𝑎𝑥,3 is the sum of the processing times of all jobs, i.e., 450. 

Using the 𝐶𝑚𝑎𝑥,𝑘 and 𝜋𝑘 values, the optimal objective function values, 𝑧∗, is found 

as  

𝑧∗  = ∑ 𝜋𝑘 ∗ 𝐶𝑚𝑎𝑥,𝑘𝑘  

      = 𝜋1 ∗ 𝐶𝑚𝑎𝑥,1 + 𝜋2 ∗ 𝐶𝑚𝑎𝑥,2 + 𝜋3 ∗ 𝐶𝑚𝑎𝑥,3 

= 0.2 ∗ 452 + 0.3 ∗ 450 + 0.5 ∗ 450 

 = 450.4 

3.5 Expected Value Problem and the Value of the Stochastic Solution 

The Expected Value Problem (EVP) is the deterministic counterpart of a Stochastic 

Problem (SP) where all the random parameters are replaced by their expected 

values. In other words, EVP can be considered an SP with a single scenario where 

the values of random parameters are set to their expected values. We refer to this 

single scenario as the expected value scenario (EV scenario). 

When the problem is deterministic, i.e., when we have a single scenario as in the 

EVP, once the set of jobs to be processed before the breakdown is determined, any 

job sequence where this set is processed before the remaining ones would achieve 

the same objective function value for the EVP. Therefore, we can further simplify 

the EVP for the two-stage SP presented in Section 3.2 by removing the sequencing 

decisions, which would yield a knapsack problem where the capacity of the 
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knapsack is the expected breakdown time and the capacity usage values for the 

items (i.e., jobs) are the processing times. In compliance with this scheme, letting 

�̅� = ∑ 𝜋𝑘 ∗ 𝑠𝑘𝑘  denote the expected breakdown and 𝑥𝑖 be a binary variable which is 

1 if job 𝑖 is processed before the breakdown (0 otherwise), the corresponding EVP 

can be formulated as: 

max ∑ 𝑝𝑖 ∗ 𝑥𝑖

𝑖

 

Subject to 

∑ 𝑝𝑖𝑖 ∗ 𝑥𝑖 ≤  �̅�   

𝑥𝑖 ∈ {0,1}   ∀𝑖       

By solving the above model, the optimal set of jobs to be processed (i.e., the jobs 

with 𝑥𝑖
∗ = 1) can be identified. A sequence where the jobs with 𝑥𝑖

∗ = 1 are 

processed before the jobs with 𝑥𝑖
∗ = 0 yields the same objective function value for 

the EVP. Without loss of generality, we use Shortest Processing Time (SPT) 

sequence within each group of jobs. The optimal objective function value of the 

EVP can be simply computed as the makespan for the EV scenario. The actual 

value of using a given sequence, which is known as the expected value of using the 

EV solution (EEV), can also be computed easily by considering the makespan for 

every scenario as: 

𝑧𝐸𝐸𝑉 =  ∑ 𝜋𝑘

𝑘

∗ 𝐶𝑚𝑎𝑥,𝑘 

where 𝜋𝑘 is the realization probability of scenario 𝑘 and 𝐶𝑚𝑎𝑥,𝑘 is the makespan 

under scenario 𝑘. 

The Value of the Stochastic Solution (VSS) measures how well the SP solution 

performs with respect to the EVP solution and it is computed as the difference 

between the expected objective values attained by these solutions as: 
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𝑉𝑆𝑆 = 𝑧𝐸𝐸𝑉 − 𝑧𝑆𝑃
∗ , 

where 𝑧𝑆𝑃
∗  is the optimal objective function of the SP. VSS shows the expected 

improvement in the objective function as a result of using a stochastic model rather 

than a deterministic model. 

3.6 An Example 

By using the data given in the example presented in Section 3.4, the expected 

breakdown is obtained as �̅� = ∑ 𝜋𝑘 ∗ 𝑠𝑘𝑘 = 0.2 ∗ 100 + 0.3 ∗ 200 + 0.5 ∗ 300 =

230. The EVP based on this expected value scenario is solved and the following 

results are obtained: 

Table 3. 6 Output of the knapsack problem 

Variables 𝑥𝑖
∗ = 1 𝑥𝑖

∗ = 0 

Jobs 

1 7 

2 8 

3 10 

4  

5  

6  

9  

 

Using the solution of the EVP and considering the SPT sequence within each 

group, we obtain the sequence to be evaluated as 1-2-3-4-5-6-9-7-8-10. A detailed 

illustration of the realization of job completion times for each scenario is presented 

below.  
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EV solution for scenario 1: 

Table 3. 7 Schedule of EV solution for scenario 1 

5 17 36 62   141 190 268 321 393 488 

1 2 3 4 5 5 6 9 7 8 10 

 

At time t=100, job 5 is interrupted and hence it is restarted after the breakdown. 

Makespan for this scenario is 𝐶𝑚𝑎𝑥,1 = 488. 

EV solution for scenario 2: 

Table 3. 8 Schedule of EV solution for scenario 2 

5 17 36 62 103 152   278 331 403 498 

1 2 3 4 5 6 9 9 7 8 10 

 

At time t=200, job 9 is interrupted and hence it is restarted after the breakdown. 

Makespan for this scenario is 𝐶𝑚𝑎𝑥,2 = 498. 

EV solution for scenario 3: 

Table 3. 9 Schedule of EV solution for scenario 3 

5 17 36 62 103 152 230 283   372 467 

1 2 3 4 5 6 9 7 8 8 10 

 

At time t=300, job 8 is interrupted and hence it is restarted after the breakdown. 

Makespan for this scenario is 𝐶𝑚𝑎𝑥,3 = 467. 

Then, EEV is calculated as follows: 

𝑧𝐸𝐸𝑉 =  ∑ 𝜋𝑘

𝑘

∗ 𝐶𝑚𝑎𝑥,𝑘 = 0.2 ∗ 488 + 0.3 ∗ 498 + 0.5 ∗ 467 = 480.5 

From Section 3.4, the optimal objective function value of the SP solution is 𝑧𝑆𝑃
∗ =

450.4. Then, the VSS can be computed as: 
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𝑉𝑆𝑆 = 𝑧𝐸𝐸𝑉 − 𝑧𝑆𝑃
∗ = 480.5 − 450.4 = 30.1 

The expected objective value is reduced to 450.4, which corresponds to an 

improvement of 30.1 units by including stochasticity in the model. Although 

solving the SP rather than the EVP is computationally more challenging, the 

associated benefits could be significant as also illustrated by this example. 
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CHAPTER 4  

4 BRANCH & BOUND METHOD 

The aim of a branch and bound (B&B) algorithm is to find an optimal solution by 

reducing the search space of all feasible solutions using some mechanisms like 

dominance rules, lower and upper bounds.  

In this chapter, we first give the basics of a B&B algorithm (Section 4.1). In section 

4.2, we describe our branch and bound algorithm in detail. 

4.1 Basics of Branch and Bound Method  

The solution space is divided into feasible subspaces. The subspaces are called 

nodes, each of which is evaluated by estimates of the optimal objective function 

values, called bounds. The evaluation process completes when all nodes are 

implicitly or explicitly evaluated (visited or fathomed). At termination, the 

algorithm returns an optimal or a predefined satisfactory solution. 

A typical sequencing problem requires the evaluation of n! complete solutions. A 

branch and bound algorithm evaluate those solutions implicitly as shown in the 

below figure. 
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Figure 4.1 A partial branching tree 

4.2 Proposed Branch and Bound Algorithm 

All n! sequences of the single machine makespan problem are identical when there 

are no breakdowns. When there are breakdowns, many, but not all, of those 

sequences are identical. To avoid the generation of identical sequences, we propose 

an efficient branching scheme. 

According to our branching scheme, we generate nodes representing the eligible 

jobs. We call a task, say job j, eligible for partial sequence (PS) if one of the 

following conditions holds: 

i. j > r when job r is the last sequenced job of PS. 

ii. ∑ 𝑝𝑖 + 𝑝𝑗𝑖∈𝑃𝑆 >  𝑠𝑘 where k satisfies 𝑠𝑘−1 < ∑ 𝑝𝑖𝑖∈𝑃𝑆 < 𝑠𝑘 
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With this branching scheme, we avoid the repetition of many partial solutions. We 

clarify the branching scheme using a 5-job and 3-scenario example instance whose 

data are tabulated below.  

Table 4.1 Processing time data 

𝒊 1 2 3 4 5 

𝒑𝒊 7 32 53 60 70 

 

Table 4.2 Breakdown time data 

𝒌 1 2 3 

𝒔𝒌 47 100 140 

 

Assume PS = {1}, jobs 2,3,4, and 5 can be added to PS as their indices are higher 

than that of job 1.  

Now assume PS = {2}, jobs 3,4, and 5 can be added to PS as their indices are 

higher than that of job 1. Job 1 cannot be assigned as 1 ≯ 2 and ∑ 𝑝𝑖 + 𝑝1 =𝑖∈𝑃𝑆

32 + 7 < 47 =  𝑠1 

Partial sequence {2,1} is not created as it is identical to {1,2}. 

Now assume a partial sequence PS = {1,4} and ∑ 𝑝𝑖 = 𝑝1 + 𝑝4 = 67𝑖∈𝑃𝑆 . 

- Job 5 can be added as 5 > 4. 

- Job 2 cannot be added as 2 ≮ 4 and ∑ 𝑝𝑖 + 𝑝2 = 67 + 32 = 99 <𝑖∈𝑃𝑆

100 =  𝑠2 where 𝑠1= 47 < ∑ 𝑝𝑖𝑖∈𝑃𝑆 = 67 < 100. 

{1,4,2} is not created as it is identical to {1,2,4}. 

- Job 3 can be added as: 

∑ 𝑝𝑖 + 𝑝3 = 67 + 53 = 120 > 100 =  𝑠2𝑖∈𝑃𝑆  where where 𝑠1= 47 < ∑ 𝑝𝑖𝑖∈𝑃𝑆 <

100. 



 

 

 

28 

 

 

{1,4,3} is created as it is not identical to {1,3,4}. 

4.3 Bounding Mechanisms 

Lower bounds are underestimates of the optimal objective function values. The 

efficiency of a branch and bound algorithm highly depends on the power of the 

lower bounds that help to fathom the nonpromising nodes without evaluating them. 

A partial schedule is eliminated value whenever its lower bound value is no less 

than the best known upper bound value. The upper bounds are overestimates of the 

optimal objective function values and they are usually found by evaluating any 

feasible solution to a problem.  

In our study, we evaluate the following three feasible sequences: 

i. Shortest Processing Time (SPT) 

ii. Longest Processing Time (LPT) 

We evaluate the above sequences and use the one that yields the minimum 

objective function value as an initial upper bound. The initial upper bound is 

updated whenever we find a complete solution with a smaller makespan value. 

We develop two lower bounds using the idea of evaluating the sequences for each 

scenario. For a partial sequence PS, we found a lower bound on PS, 𝐿𝐵 (𝑃𝑆) as 

follows: 

𝐿𝐵(𝑃𝑆) = ∑ 𝜋𝑘

𝑚

𝑘=1

∗ 𝐿𝐵 (𝑃𝑆 | 𝑘) 

where 𝐿𝐵 (𝑃𝑆 | 𝑘) is a lower bound the makespan value given scenario k, i.e., a 

lower bound on a deterministic problem with a single scenario that occurs at time 

𝑠𝑘. We take breakdown time, 𝑑𝑘, zero, as it is irrelevant to optimization.  
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To find 𝐿𝐵(𝑃𝑆), we use two approaches. The first approach, 𝐿𝐵1(𝑃𝑆), is used as a 

filtering mechanism. 

To find 𝐿𝐵1(𝑃𝑆), through 𝐿𝐵1(𝑃𝑆 | 𝑘) values, we consider two cases.  

Case 1.  𝑠𝑘 ≤ ∑ 𝑝𝑖𝑖∈𝑃𝑆  then evaluate the PS by appending the unsequenced 

jobs in any order, let the resulting 𝐶𝑚𝑎𝑥 value be 𝐿𝐵1(𝑃𝑆 | 𝑘).  

PS is the given order, once the order is used 𝑠𝑘 will be exceeded and the sequence 

of the unsequenced jobs becomes immaterial, altogether contributing to the lower 

bound as ∑ 𝑝𝑖.𝑖  

Case 2.  𝑠𝑘 > ∑ 𝑝𝑖𝑖∈𝑃𝑆  then we set 𝐿𝐵1(𝑃𝑆 | 𝑘) =  ∑ 𝑝𝑖𝑖 . 

Hence we assume the jobs can be preempted as all sequences are immaterial each 

leading to a makespan value of ∑ 𝑝𝑖
𝑛
𝑖=1 . 

We illustrate 𝐿𝐵1(𝑃𝑆) via the following example instance with 5 jobs and 4 

scenarios. 

Tablo 4.3 Processing time of jobs in example 

𝒊 1 2 3 4 5 

𝒑𝒊 10 30 40 50 60 

 

Tablo 4.4 Breakdown time and occurrence probability data 

𝒌 1 2 3 4 

𝒔𝒌 20 30 100 190 

𝝅𝒌 0.2 0.3 0.4 0.1 

 

Assume PS={1,2}, ∑ 𝑝𝑖 = 40𝑖∈𝑃𝑆  and   ∑ 𝑝𝑖 = 150𝑖∉𝑃𝑆  

- For k=1, 𝑠1 = 20 < ∑ 𝑝𝑖 = 40𝑖∈𝑃𝑆   
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Hence case 1 occurs. 

𝐿𝐵1(𝑃𝑆 | 1) = 𝑠1 + 𝑝2 + ∑ 𝑝𝑖

𝑖∉𝑃𝑆

= 20 + 30 + 150 = 200 

- For k=2, 𝑠1 = 30 < ∑ 𝑝𝑖 = 40𝑖∈𝑃𝑆  

Case 1 occurs. 

𝐿𝐵1(𝑃𝑆 | 2) = 𝑠2 + 𝑝2 + ∑ 𝑝𝑖

𝑖∉𝑃𝑆

= 30 + 30 + 150 = 210 

- For k=3,  𝑠3 = 100 > ∑ 𝑝𝑖 = 40𝑖∈𝑃𝑆  

Case 2 occurs. 

𝐿𝐵1(𝑃𝑆 | 3) = ∑ 𝑝𝑖

𝑖∈𝑃𝑆

= 190 

- For k=4, 𝑠4 = 190 > 40  

Case 2 occurs. 

𝐿𝐵1(𝑃𝑆 | 4) = ∑ 𝑝𝑖

𝑖∈𝑃𝑆

= 190 

The overall lower bound, 𝐿𝐵1(𝑃𝑆) is found as: 

𝐿𝐵1(𝑃𝑆) = ∑ 𝜋𝑘 ∗ 𝐿𝐵1(𝑃𝑆 | 𝑘)

4

𝑘=1

 

= 0,2 ∗ 200 + 0,3 ∗ 210 + 0,4 ∗ 190 + 0,1 ∗ 190 

= 198 

The second approach, 𝐿𝐵2(𝑃𝑆), proceeds like 𝐿𝐵1(𝑃𝑆) when 𝑠𝑘 ≤ ∑ 𝑝𝑖𝑖∈𝑆 , 

however, improves 𝐿𝐵1(𝑃𝑆) for case 2. In doing so, we let 𝑅𝑘 be an upper bound 

on the number of jobs that can be processed before 𝑠𝑘, and we let 𝐼𝑘 denote the 

time left for unsequenced jobs after the last job in PS is processed, accordingly 

𝐼𝑘 = 𝑠𝑘 − ∑ 𝑝𝑖𝑖∈𝑃𝑆  which is positive for case 2. 

To find 𝑅𝑘, we use the following relation: 
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∑ 𝑝𝑖 ≤  𝑠𝑘
𝑅𝑘 
𝑖=1  and ∑ 𝑝𝑖 >  𝑠𝑘

𝑅𝑘+1
𝑖=1  where 𝑝𝑖 is the 𝑖𝑡ℎ smallest processing in the 

unsequenced jobs set, i.e., 𝑃𝑆̅̅̅̅ . 

We consider four cases for 𝑅𝑘 values. 

Case 1.  𝑅𝑘 = 0 

𝐿𝐵2(𝑃𝑆 | 𝑘) = 𝑠𝑘 + ∑ 𝑝𝑖

𝑖∉𝑃𝑆

 

Case 2.  𝑅𝑘 = 1 

We find the largest 𝑝𝑖 in 𝑃𝑆̅̅̅̅ , that is no more than 𝐼𝑘, i.e., 

𝑟 = 𝑀𝑎𝑥{𝑖𝜖𝑃𝑆̅̅̅̅  | 𝑝𝑖 ≤  𝐼𝑘} 

𝐿𝐵2(𝑃𝑆 | 𝑘) = 𝑠𝑘 + ∑ 𝑝𝑖

𝑖∉𝑃𝑆

− 𝑝𝑟 

Thus, we maximize the processing time put in 𝐼𝑘, thereby minimizing the 

makespan. 

Case 3.  𝑅𝑘 = 2 

As in Case 2, we aim to maximize the processing put in 𝐼𝑘. This can be done in two 

ways with a single job or with a job pair. 

A single job that maximizes the total processing should satisfy the following 

condition: 

𝑝[𝑟] = 𝑀𝑎𝑥 { 𝑝[𝑖] |[𝑖] 𝜖 𝑃𝑆̅̅̅̅ ,  𝑝[𝑖]  ≤  𝐼𝑘  ≤  𝑝[𝑖] +  𝑝[1]}  

Note that such [r] may not exist. 

This condition follows that jobs [r+1], [r+2], … cannot fit in 𝐼𝑘 and job[r] cannot fit 

in 𝐼𝑘 together with another unsequenced job. 
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A job pair that maximizes the total processing can be found through the following 

procedure. 

Step 0. If [r] does not exist, [r] is the index of the longest job that fits in 𝐼𝑘 in 𝑃𝑆̅̅̅̅ +

1. 

𝑃𝑆𝑆 = 𝑃𝑆̅̅̅̅  

𝑃 = 𝑝[𝑟] 

Step 1. Find the longest job in PSS that fits in 𝐼𝑘 together with job[r], hence find 

job[a] that satisfies the following condition: 

𝑝[𝑎] = 𝑀𝑎𝑥 {𝑝[𝑖]|[𝑖] 𝜖 𝑃𝑆𝑆, 𝑝[𝑖] + 𝑝[𝑟−1] ≤ 𝐼𝑘} 

If such a job [a] does not exist, go to Step 3. 

𝑝 = max {𝑝,  𝑝[𝑎] +  𝑝[𝑟−1]} 

Step 2. PSS = PSS \{[1],…[a]} 

The unsequenced jobs set is updated as the shorter jobs cannot fill 𝐼𝑘 better. 

𝑟 = 𝑟 − 1 

Go to Step 1. 

Step 3. Stop  

𝐿𝐵2(𝑃𝑆 | 𝑘) = 𝑠𝑘 + ∑ 𝑝𝑖

𝑖∈𝑃𝑆̅̅̅̅

− 𝑝 

Case 4.  k∗ ≥ 3 

 Case 4.1. The longest unsequenced 𝑅𝑘 tasks can fit to 𝐼𝑘 

 ∑ 𝑝[𝑖]
′𝑅𝑘

𝑖=1 < 𝐼𝑘 where 𝑝[𝑖]
′  is the longest unscheduled job that can fit in 𝐼𝑘,i.e., 

𝑝[𝑖]
′ < 𝐼𝑘 for all i. 
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𝐿𝐵2(𝑃𝑆 | 𝑘) = 𝑠𝑘 + ∑ 𝑝𝑖

𝑖∈𝑃𝑆

− ∑ 𝑝[𝑖]
′

𝑅𝑘

𝑖=1

 

 Case 4.2.  ∑ 𝑝[𝑖]
′𝑅𝑘

𝑖=1 ≥  𝐼𝑘 

𝐿𝐵2(𝑃𝑆 | 𝑘) = ∑ 𝑝𝑖

n

𝑖=1

 

In our experiments, we first find 𝐿𝐵1(𝑃𝑆). If 𝐿𝐵1(𝑃𝑆) ≥ 𝑈𝐵 then we fathom PS. 

Otherwise, we find 𝐿𝐵2(𝑃𝑆) and fathom PS if 𝐿𝐵2(𝑃𝑆) ≥ 𝑈𝐵. 

Batun ve Azizoğlu (2009) used the 𝑘∗ values in their deterministic single machine 

total flow problem with several breakdowns. They use the procedure of our Case 4 

for all 𝑘∗ values. Thus, we improve the lower bound of Batun ve Azizoğlu (2009) 

by providing more efficient bounds for the special cases. 

We illustrate 𝐿𝐵2(𝑃𝑆) through a 7-job, 6-scenario example instance whose data are 

tabulated below. 

Table 4.5 Processing time data for 7-job, 6-scenario example instance 

𝒊 1 2 3 4 5 6 7 

𝒑𝒊 10 15 20 25 60 75 90 

 

Table 4.6 Breakdown time and occurrence probability data for 7-job, 6-scenario 

example instance 

𝒌 1 2 3 4 5 6 

𝒔𝒌 20 40 65 120 210 295 

𝝅𝒌 0.1 0.2 0.3 0.2 0.1 0.1 

 

Assume PS={1,2}: 
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∑ 𝑝𝑖 = 10 + 15 = 25𝑖∈𝑃𝑆  and ∑ 𝑝𝑖 = 20 + 25 + ⋯ + 90 = 270𝑖∉𝑃𝑆  

• For k=1 

𝑠1 = 20 < ∑ 𝑝𝑖 = 25

𝑖∈𝑃𝑆

 

𝐿𝐵2(𝑃𝑆 | 1) = 20 + 15 + 270 = 305 

• For k=2 

𝑠2 = 40 > ∑ 𝑝𝑖 = 25

𝑖∈𝑃𝑆

 

𝐼2 =  𝑠2 − ∑ 𝑝𝑖 = 40 − 25 = 15

𝑖∈𝑃𝑆

 

𝑝3 = 20 > 15 ➔ 𝑹𝟐 = 𝟎 

𝐿𝐵2(𝑃𝑆 | 2) = 40 + 270 = 310 

As 𝑠2 > ∑ 𝑝𝑖𝑖∈𝑃𝑆 , 𝑠𝑘 > ∑ 𝑝𝑖𝑖∈𝑃𝑆  because 𝑠𝑘′𝑠 are in their increasing order, so we do 

not check, 𝑠𝑘 > ∑ 𝑝𝑖𝑖∈𝑃𝑆  for later scenarios. 

• For k=3 

𝐼3 =  𝑠3 − ∑ 𝑝𝑖 = 65 − 25 = 40

𝑖∈𝑃𝑆

 

𝑝3 = 20 < 40  𝑝3 + 𝑝4 = 20 + 25 > 40 ➔ 𝑅3 = 1 

𝑀𝑎𝑥{𝑖𝜖𝑃𝑆̅̅̅̅ | 𝑝𝑖 ≤  𝐼2} = 𝑀𝑎𝑥{𝑝3, 𝑝4} = 25 

𝐿𝐵2(𝑃𝑆 | 3) = 65 + 270 − 25 = 310 

• For k=4 

𝐼4 =  𝑠4 − ∑ 𝑝𝑖 = 120 − 25 = 95

𝑖∈𝑃𝑆
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𝑝3 + 𝑝4 = 20 + 25 < 95  

𝑝3 + 𝑝4 + 𝑝5 = 105 > 95 ➔ 𝑹𝟒 = 𝟐 

We apply the procedure find the jobs that could only fit in 𝐼4 alone. 

𝑝7 = 90 < 95  𝑝7 + 𝑝3 = 90 + 20 = 110 > 95 

Job 7 fits alone, P=90. 

Take 𝑝6.  𝑝6 + 𝑝3 = 95  𝑝6 + 𝑝4 = 100 > 95 

𝑝 = max{90,95} = 95 

Take 𝑝5. 𝑝5 + 𝑝3 = 80 < 95 𝑝5 + 𝑝4 = 85 < 95 

𝑝 = max{95,85} = 95 

𝐿𝐵2(𝑃𝑆 | 4) = 120 + 270 − 95 = 295 

• For k=5 

𝐼5 =  𝑠5 − ∑ 𝑝𝑖 = 210 − 25 = 185

𝑖∈𝑃𝑆

 

𝑝3 + 𝑝4 + 𝑝5 + 𝑝6 = 180 < 185 

𝑝3 + 𝑝4 + 𝑝5 + 𝑝6 + 𝑝7 = 270 > 185 ➔ 𝑹𝟓 = 𝟒 

∑ 𝑝[𝑖]
′ = 𝑝7

4

𝑖=1

+ 𝑝6 + 𝑝5 + 𝑝4 = 250 > 𝐼5 

𝐿𝐵2(𝑃𝑆 | 5) = ∑ 𝑝𝑖

𝑛

𝑖=1

= 295 

• For k=6 

𝐼6 =  𝑠6 − ∑ 𝑝𝑖 = 295 − 25 = 270

𝑖∈𝑃𝑆
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∑ 𝑝𝑖 = 270𝑖∉𝑃𝑆̅̅̅̅  ➔ All jobs in 𝑃𝑆̅̅̅̅  fits. 

𝐿𝐵2(𝑃𝑆 | 6) = 295 

𝐿𝐵2(𝑃𝑆) = ∑ 𝜋𝑘 ∗6
𝑘=1 𝐿𝐵2(𝑃𝑆| 𝑘) = 0.1 ∗ 305 + 0.2 ∗ 310 + 0.3 ∗ 310 + 0.2 ∗

295 + 0.1 ∗ 295 + 0.1 ∗ 295 = 303.5  
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CHAPTER 5  

5 COMPUTATIONAL EXPERIMENTS 

In this chapter, we discuss the results of our experiment that is designed to test the 

performances of the stochastic programming models and the branch and bound 

algorithm. We also assess the value of using a stochastic programming approach, 

i.e., the value of the stochastic solution. 

In Section 5.1, we report our data generation scheme. Section 5.2 defines our 

performance measures. In section 5.3, we discuss the computational results through 

our performance measures. 

5.1 Data Generation 

• We set the number of jobs. 

o n = 10 and 15 for the stochastic programming model  

o n = from 10 to 50 for the branch and bound algorithm 

• We have two sets for processing times, 𝑝𝑖 values. In the first set, Set 1, 

processing times are generated from a discrete uniform distribution between 

1 and 10, i.e., U [1,10]. In the second set, Set 2, U [1,100] is used to 

generate processing times. Note that Set 2 resides higher processing times 

in a wider range compared to Set 1. 

We assume that the durations of breakdown values are zero as those times are 

irrelevant for makespan optimization. 
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• We set the number of scenarios, m, to 3 and 5. The breakdown times, 𝑠𝑘 

values, are generated according to two plans:  

Plan 1. Periodic 𝑠𝑘 values 

In this plan, 𝑠𝑘 is set to 
∑ 𝑝𝑖𝑖

𝑚
∗ 𝑘, i.e, 𝑠1 =

∑ 𝑝𝑖𝑖

𝑚
, 𝑠2 = 2 ∗

∑ 𝑝𝑖𝑖

𝑚
, …, 𝑠𝑚 = ∑ 𝑝𝑖𝑖 . 

• Note that 𝑠𝑚 corresponds to the end of all processing, i.e., no breakdown 

case 

Plan 2. Random 𝑠𝑘 values for the first m-1 scenarios. 

𝑠𝑘 values are generated randomly between max{𝑝𝑖} and ∑ 𝑝𝑖 − 1𝑖 . We use 

max{𝑝𝑖} as the earliest time to guarantee that all jobs can be processed before the 

breakdown. 

For the last scenario, we take 𝑠𝑚 =  ∑ 𝑝𝑖𝑖  to mean that no breakdown has occurred.  

• We use two sets for the scenario probability, i.e., 𝜋𝑘 values, as: 

Set 1: All scenarios are equally likely to occur, i.e, 𝜋𝑘 =
1

𝑚
 for all k. 

Set 2:  The later breakdowns are more likely. 

For 3-scenario case, we set: 𝜋1 =
1

6
 ,  𝜋2 =

2

6
 ,  𝜋3 =

3

6
  

For 5-scenario case, we set: 𝜋1 =
1

15
 ,  𝜋2 =

2

15
 ,  𝜋3 =

3

15
,  𝜋3 =

4

15
,  𝜋5 =

5

15
 

For each n, we have two processing time sets, two breakdown plans, two 

probability sets, and two values of m, hence 2x2x2x2=16 combinations. 

We plan 2 different values of n for the model and 5 different values for the 

algorithm of n, yielding a total of 16x2=32 and 16x5=80 combinations for each 

solution method, respectively. For each combination, we plan to generate 10 

instances. Hence our experiment set will have 320 problem instances for the model 

and 800 problem instances for the algorithm. 
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5.2 Performance Measures 

We evaluate the performance of the stochastic models by the CPU (Central 

Processing Units) seconds. We report average a maximum, i.e., worst case, CPU 

times. 

For the B&B, we will use the CPU times and the number of nodes as the 

performance measures. Average and maximum CPU times and number of nodes 

will be reported. 

To assess the value of the stochastic programming approach, we evaluate the 

expected makespan value of the expected value solution (EEV) and the value of the 

stochastic solution (VSS). We report average and maximum EEV-SP values for 

each problem combination. 

We set a termination limit of two hours both for the mathematical models and 

branch and bound algorithm. We also report the number of instances that could be 

solved to optimality in two hours. 

The mathematical models are solved by CPLEX Optimizer 20.1.0   We code the 

branch and bound algorithm using the C++ programming language. All 

experiments are conducted on a personal computer with 11th Gen Intel® Core™ i5 

-1135G7 @2.40GHz (4CPUs), 2.42GHz processors, and 8GB RAM.  

5.3 Analysis of the Results 

In this section, we report on the performances of our mathematical models and 

branch and bound algorithm (B&B). Section 5.3.1 discusses the performance of the 

stochastic models, Precedence Based Stochastic Model (𝑆𝑃1) and the Position 

Based Stochastic Model (𝑆𝑃2). Results of the B&B are revealed in the Section 

5.3.2, and discussion about these results are made in this section. In addition, VSS 

results are discussed in the Section 5.3.3. 
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5.3.1 Stochastic Programming 

In this subsection, we report on the relative performances of 𝑆𝑃1 and 𝑆𝑃2 for n=10. 

Tables 5.1 and 5.2 compare 𝑆𝑃1 and 𝑆𝑃2 for low processing time (𝑝𝑖~𝑈[1,10]) and 

high processing time (𝑝𝑖~𝑈[1,100]), respectively. The tables report on the average 

and maximum CPU times, for m=3, 5 and two probability sets. 

Table 5. 1 Performances of SP1 and SP2, 𝑝𝑖~𝑈[1,10], n=10 

m 

Probability 

(1=Equal, 

2=Later) 

SP1 SP2 

CPU Time CPU Time 

Average Maximum Average Maximum 

3 
1 11.2 30 1.1 3 

2 8.2 12 18.8 187 

 

Table 5. 2 Performances of SP1 and SP2, 𝑝𝑖~𝑈[1,100], n=10 

m 

Probability 

(1=Equal, 

2=Later) 

SP1 SP2 

CPU Time CPU Time 

Average Maximum Average Maximum 

3 
1 5.7 14 612.7 1964 

2 5.1 8 292.8 1745 

5 
1 126.7 969 2002.2 3514 

2 89.4 217 2451.9 6101 

 

As can be observed from Tables 5.1 and 5.2, the performances of both models 

deteriorate as m increases. This is due to the increase of the binary variables with 

increase in m, for both 𝑆𝑃1 and 𝑆𝑃2. We also observe that the performance of 𝑆𝑃1 is 

better than that of 𝑆𝑃2 which can be attributed to the fewer binary variables used by 

the former model, 𝑆𝑃1. 
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Attributing to the its superior performance particularly for 𝑝𝑖~𝑈[1,100], we 

continue the parametric analysis with 𝑆𝑃1 in the next subsection. 

We now report on the performance of the precedence based stochastic model, 𝑆𝑃1, 

on larger-sized problems.  Table 5.3 gives the performance for 𝑝𝑖~𝑈[1,100]. The 

table give the average and maximum CPU times and the number of unsolved 

instances in two hours. We try on different values of n starting with n=10, in 

increments of 5. 

Table 5. 3 CPU Times of SP1, 𝑝𝑖~𝑈[1,100] 

n m 
Probability  

(1=Equal, 2=Later) 

CPU Time Number 

Solved Average Maximum 

10 

3 
1 8.8 30 10 

2 6.4 18 10 

5 
1 112.2 641 10 

2 29.1 80 10 

15 

3 
1 3617  7200 1 

2 - - - 

5 
1 - - - 

2 - - - 

 

Note from the above tables that when n=10, all instances can be solved in 2 hours.  

The average CPU time is about 9 seconds when m=3 and about 110 minutes when 

m=5.  The maximum CPU time is 10 minutes and observed in equal probability 

combination. When n becomes 15, the majority of the instances are left unsolved in 

2 hours and the associated entries in Table 5.3 are left empty.  The increase in the 

complexity of the solutions with increase in n is due to the increase in the number 

of binary variables in 𝑆𝑃1. As n increases, the number of binary variables 

associated to n increases exponentially. 
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5.3.2 Branch & Bound Algorithm  

In this section, we report the results of the proposed branch and bound algorithm. 

We consider the average and maximum CPU times (in seconds), the average and 

the maximum number of nodes evaluated, and the number of unsolved instances 

within the two-hour time limit as our performance measures. We report these 

measures for five levels of the number of jobs (n = 10, 20, 30, 40, and 50) and two 

levels of the number of scenarios (m = 3 and 5) in Tables 5.4-5.11. The number of 

unsolved instances, out of 10 instances within the time limit are presented together 

with maximum CPU times and denoted in parentheses.   

Table 5. 4 Computational Results for the Branch and Bound Algorithm for Set 1, 

Plan 1 and 𝑝𝑖 ~𝑈[1,10] 

 

 

Table 5. 5 Computational Results for the Branch and Bound Algorithm for Set 1, 

Plan 2 and 𝑝𝑖 ~𝑈[1,10] 

 
*The figures in the parentheses give the number of unsolved instances in 2 hours. 

Average Maximum Average Maximum Average Maximum Average Maximum

10 0.011 0.014 74 117 0.036 0.087 983 3,208

20 0.033 0.042 210 211 0.605 3038 7,922 39,860

30 0.115 0.141 464 466 0.879 7463 10,931 104,848

40 0.177 0.215 817 821 0.195 0.264 830 889

50 0.249 0.269 1,275 1,276 0.270 0.359 1,298 1,523

n

m=3 m=5

CPU Time Number of Nodes CPU Time Number of Nodes

Average Maximum Average Maximum Average Maximum Average Maximum

10 0.026 0.045 264 1,216 0.056 0.139 950 3,843

20 722.036 7200 (1)* 5,088,702 49,819,874 2.666 24.904 73,820 728,869

30 0.211 0.231 447 466 737.423 7200 (1)* 2,991,954 27,717,338

40 4.126 38.359 62,426 615,837 2598.080 7200 (3)* 18,616,526 88,196,192

50 0.436 0.485 1,289 1,444 1440.231 7200 (2)* 9,732,598 60,060,234

n

m=3 m=5

CPU Time Number of Nodes CPU Time Number of Nodes
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Table 5.6 Computational Results for the Branch and Bound Algorithm for Set 2, 

Plan 1 and 𝑝𝑖 ~𝑈[1,10] 

 

Table 5. 7 Computational Results for the Branch and Bound Algorithm for Set 2, 

Plan 2 and 𝑝𝑖 ~𝑈[1,10] 

*The figures in the parentheses give the number of unsolved instances in 2 hours. 

Table 5. 8 Computational Results for the Branch and Bound Algorithm for Set 1, 

Plan 1 and 𝑝𝑖 ~𝑈[1,100] 

*The figures in the parentheses give the number of unsolved instances in 2 hours. 

Average Maximum Average Maximum Average Maximum Average Maximum

10 0.087 0.104 85 135 0.296 0.637 2,913 11,424

20 0.220 0.404 569 3,668 0.534 3.072 5,806 48,618

30 0.267 0.336 465 466 11.844 100.610 268,391 2,422,754

40 0.373 0.620 814 821 0.217 0.301 865 1,044

50 0.506 0.590 1,271 1,276 69.763 515.374 581,422 4,245,445

n

m=3 m=5

CPU Time Number of Nodes CPU Time Number of Nodes

Average Maximum Average Maximum Average Maximum Average Maximum

10 0.122 0.220 370 3,023 0.646 2.605 19,315 108,439

20 0.407 2.483 7,686 72,036 1443.159 7200 (2)* 40,819,739 206,208,655

30 0.323 0.843 1,338 8,032 8.060 76.215 186,921 1,851,968

40 0.327 0.408 853 1,143 721.237 7200 (1)* 11,532,788 115,233,391

50 0.463 0.576 1,267 1,276 12.32 118.429 209,370 2,080,665

n

m=3 m=5

CPU Time Number of Nodes CPU Time Number of Nodes

Average Maximum Average Maximum Average Maximum Average Maximum

10 0.053 0.102 500 1,526 0.130 0.201 1,366 2,830

20 0.048 0.072 339 676 29.001 216.975 648,147 5,040,425

30 0.079 0.116 471 523 0.470 1.490 7,302 25,474

40 0.108 0.129 833 871 723.572 7200 (1)* 5,778,795 57,245,222

50 0.165 0.181 1,306 1,370 0.285 0.540 1,970 3,699

n

m=3 m=5

CPU Time Number of Nodes CPU Time Number of Nodes
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Table 5. 9 Computational Results for the Branch and Bound Algorithm for Set 1, 

Plan 2 and 𝑝𝑖 ~𝑈[1,100] 

*The figures in the parentheses give the number of unsolved instances in 2 hours. 

Table 5. 10 Computational Results for the Branch and Bound Algorithm for Set 2, 

Plan 1 and 𝑝𝑖 ~𝑈[1,100] 

 

Table 5. 11 Computational Results for the Branch and Bound Algorithm for Set 2, 

Plan 2 and 𝑝𝑖 ~𝑈[1,100] 

*The figures in the parentheses give the number of unsolved instances in 2 hours. 

Average Maximum Average Maximum Average Maximum Average Maximum

10 0.059 0.231 1,639 8,325 0.105 0.205 2,164 6,422

20 0.068 0.154 612 2,806 2347.972 7200 (3)* 47,376,972 180,590,045

30 722.469 7200 (1)* 10,396,335 103,226,591 1457.592 7200 (2)* 15,308,087 109,886,724

40 1440.100 7200 (2)* 12,367,343 65,342,289 2162.353 7200 (3)* 20,688,532 73,484,684

50 1440.190 7200 (2)* 15,966,518 84,327,441 2884.418 7200 (4)* 32,662,854 121,405,021

n

m=3 m=5

CPU Time Number of Nodes CPU Time Number of Nodes

Average Maximum Average Maximum Average Maximum Average Maximum

10 0.132 0.174 825 1,730 0.304 0.395 2,530 6,154

20 0.264 1.334 2,645 22,369 834.931 4876.442 10,138,230 54,407,771

30 0.182 0.263 485 539 3.377 22.388 59,304 444,366

40 0.248 0.295 856 982 0.330 1334.000 1,714 8,544

50 0.304 0.364 1,290 1,396 0.325 0.484 1,431 2,174

n

m=3 m=5

CPU Time Number of Nodes CPU Time Number of Nodes

Average Maximum Average Maximum Average Maximum Average Maximum

10 0.113 0.214 497 3,366 0.328 0.720 3,507 12,840

20 0.149 0.199 288 559 730.500 7200 (1)* 14,149,241 138,751,079

30 720.224 7200 (1)* 8,396,481 83,955,421 2161.599 7200 (3)* 25,664,053 95,446,921

40 860.591 7200 (1)* 10,279,600 71,293,331 2880.523 7200 (4)* 23,758,292 101,234,212

50 2.043 16.534 13,333 119,461 1569.596 7200 (2)* 10,637,254 96,322,856

n

m=3 m=5

CPU Time Number of Nodes CPU Time Number of Nodes



 

 

 

45 

 

 

5.3.2.1 Effects of the Problem Size Parameters  

The tables in the Part 5.3.2 altogether reveal that the performance of the B&B 

deteriorates with increases in the number of jobs (n) and increases in the number of 

scenarios (m). The effect of m on the performance is more significant than that of n. 

For example, as can be observed from Table 5.6, the average CPU times, increases 

from 0.296 seconds to 69.763 seconds when n increases from 10 to 50 when m=5 

for Set 2 instances with Plan 1 and 𝑝𝑖 ~𝑈[1,10]. However, consistency in CPU 

times is not observed in some settings due to few instances. For example, as can be 

observed from Table 5.5, the average CPU times decreases from 722.036 seconds 

to 0.436 seconds when n increases from 20 to 50 for Set 1 instances and m=3 with 

Plan 2 and 𝑝𝑖 ~𝑈[1,10]. When two computationally challenging instances that can 

be accepted as outliers are excluded from calculations, the average CPU times of 

remaining 8 instances become 0.131 seconds, which supports the statement that an 

increase on the CPU time is observed when the number of jobs increases. Like 

CPU times, the number of nodes generated also increases with the number of jobs.  

There is no unsolved instance in two hours when n=10. However, the unsolved 

instances are observed with the increase in the of number jobs, mostly when n=40 

and 50. The increases in the CPU times and the number of nodes is due to the 

inflated size of the branch and bound tree. The tree has n levels of depth. 

On the other hand, the increases are not too significant, and the exponential nature 

of the search is dispelled by powerful branching scheme and bounding 

mechanisms. To check the performance for many more jobs, we solve instances 

with 100, 150 and 200 jobs when there are 5 scenarios and 𝑝𝑖 ~𝑈[1,100]. We 

report the results in Table 5.12 (for Set 1 and Plan 1), Table 5.13 (for Set 1 and 

Plan 2), Table 5.14 (for Set 2 and Plan 1) and Table 5.15 (for Set 2 and Plan 2). 

The tables give the average and maximum CPU times and average and maximum 

number of nodes over 5 generated instances.  
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Table 5. 12 Computational Results for the Branch and Bound Algorithm for Set 1, 

Plan 1, higher n values and 𝑝𝑖 ~𝑈[1,100]. 

n 

m=5 

CPU Time Number of Nodes 

Average Maximum Average Maximum 

100 0.983 1.206 5,085 5,565 

150 3.935 4.159 11,255 11,326 

200 6.249 7.116 20,070 20,101 

 

Table 5.13 Computational Results for the Branch and Bound Algorithm for Set 1, 

Plan 2, higher n values and 𝑝𝑖 ~𝑈[1,100]. 

n 

m=5 

CPU Time Number of Nodes 

Average Maximum Average Maximum 

100 2.063 2.385 5,042 5,050 

150 2.995 3.123 11,326 11,326 

200 23.147 88.293 31,192 75,735 

 

Table 5. 14 Computational Results for the Branch and Bound Algorithm for Set 2, 

Plan 1, higher n values and 𝑝𝑖 ~𝑈[1,100]. 

n 

m=5 

CPU Time Number of Nodes 

Average Maximum Average Maximum 

100 1.664 1.843 5,037 5,047 

150 2.896 2.955 11,285 11,326 

200 5.087 5.172 20,054 20,101 
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Table 5. 15 Computational Results for the Branch and Bound Algorithm for Set 2, 

Plan 2, higher n values and 𝑝𝑖 ~𝑈[1,100]. 

n 

m=5 

CPU Time Number of Nodes 

Average Maximum Average Maximum 

100 1441.338 7200 (1)* 5572 7271 

150 6.225 14.173 12630.6 17951 

200 1444.133 7200 (1)* 20073.8 20101 

*The figures in the parentheses give the number of unsolved instances in 2 hours 

 

As can be noted from the tables, there are 2 unsolved instances out of 60 instances, 

and the CPU times for small instances are mostly less than 20 seconds. We observe 

that the number of jobs, n, affects the results quietly. The reason behind this 

situation is that our algorithms find the best optimal solution that is generally equal 

to the sum of the processing times of jobs with the powerful LBs easily. When the 

best optimal solution is found, fathoming structure helps to eliminate worse 

solutions. 

Tables 5.4 through 5.11 show that the performance of the algorithm is better when 

m is smaller. This holds over all problem sets. Note that, when n=20 and 

 for Set 1 and Plan 2 instances, the maximum CPU time is 0.154 

seconds when m=3 and 7200 seconds when m=5. The same behaviour also 

observed for the average CPU times. For m=5 combination, there are 4 unsolved 

instances in two hours. The same behaviour also observed for the average CPU 

times. Another notable example is when n=20 and  for Set 2 and Plan 

2 instances. For this combination, the maximum CPU time is 2.483 seconds when 

m=3 and there are 2 unsolved instances when m=5. Likewise, number of nodes 

explored till the optimal solution is reached increases when m value changes from 3 

to 5. For instance, the average number of nodes significantly increases from 485 to 
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59,304 when the m changes from 3 to 5 for n=30 in Table 5.10. This is due to the 

superior performance of the lower bounds for small m. Our lower bounds find an 

underestimate for each scenario and sum them to get the overall values. This 

follows, their performance deteriorates as the number of underestimates in the sum, 

increases. 

5.3.2.2 Effects of the Processing Time Distributions 

There are two sets for processing times, generated from a discrete uniform 

distribution 𝑈[1,10] and 𝑈[1,100] respectively. Discussion of the results is given 

as a bulleted list for each combination, and comments about results are made. 

• Set 1 - Plan 1: There is not a significant difference or pattern in CPU times 

and number of nodes generated between the results of 𝑝𝑖 ~𝑈[1,10] and 

𝑝𝑖 ~𝑈[1,100] for the m=3. Otherwise, our algorithm performs better for the 

𝑝𝑖 ~𝑈[1,10] when m=5. For a notable example, while average CPU times for 

n=20, 𝑝𝑖 ~𝑈[1,100], Set 1 and Plan 1 is equal to 29.001 seconds, it is only 0.605 

seconds for 𝑝𝑖 ~𝑈[1,10], approximately 15 times. In addition, 1 from 50 instances 

are not solved in the termination limit, two hours for 𝑝𝑖 ~𝑈[1,100]. The same 

behavior with CPU times is observed for the number of nodes generated in the 

model. 

• Set 1 – Plan 2: For this problem settings, there are many unsolved instances 

for both scenarios’ number. By considering number of unsolved instances, 

performance of the branch and bound algorithm deteriorates for 𝑝𝑖 ~𝑈[1,100] with 

respect to 𝑝𝑖 ~𝑈[1,10]. 

• Set 2 – Plan 1: Results reveal that algorithm performs well in terms of 

number of nodes and computation times for 𝑝𝑖 ~𝑈[1,100] when n is relatively 

small for m=3. When n becomes taking higher values, results of 𝑝𝑖 ~𝑈[1,10] is 
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better than results of 𝑝𝑖 ~𝑈[1,100]. However, performance measures are very close 

to ignore the results of this problem setting. 

• Set 2 – Plan 2:  Effects of processing time generation is more obvious for 

Set 2 and Plan 2 than other problem settings.  Branch and bound algorithm perform 

poorer for 𝑝𝑖 ~𝑈[1,100] in terms of both of performance measures. 

The instances with 𝑝𝑖 ~𝑈[1,10] produce very close objective function values for 

different job sequences due to similarity of the processing times. This follows 

solution found at the early levels of branching are close to the optimal expected 

makespan values and the B&B does not have search many more nodes. When 

𝑝𝑖 ~𝑈[1,100] the sequences are much apart from each other and optimal solution 

can be reached after visiting many sequences having not so close expected 

makespan values.  

Another point that should be emphasized is that we observe that the B&B for 

𝑝𝑖 ~𝑈[1,100] instances are more sensitive to the use of 𝐿𝐵2 In other words, 𝐿𝐵2 

makes more significant eliminations when 𝑝𝑖 ~𝑈[1,100]. For example, the average 

CPU time for m= 5, Set 2 and Plan 1 decreases from 4.513 seconds to 3.949 

seconds for 𝑝𝑖 ~𝑈[1,10] while it reduces from 135.151 seconds to 11.668 seconds 

for 𝑝𝑖 ~𝑈[1,100] in the Tables 5.20 and 5.22. This is due to the fact that 𝐿𝐵2 finds 

fewer chances to fill the intervals thereby resulting in higher idle time values when 

𝑝𝑖 ~𝑈[1,100]. Higher idle time values mean higher lower bounds, hence higher 

chances for node eliminations. 

5.3.2.3 Effects of the Breakdown Plans 

Breakdown times are determined according to two plans, periodic breakdowns 

named Plan 1 and random breakdowns named Plan 2. The performance of the 

algorithm for CPU time is better when breakdown times are determined as periodic 

with respect to random breakdown generally. For a notable example, the average 
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CPU times increase from 0.177 seconds to 4.126 seconds, approximately 40 times, 

after changing the breakdown plan from periodic to random for Set 1 instance with 

n=40, m=3 and 𝑝𝑖 ~𝑈[1,10]. However, we observe the opposite of this indication 

where Plan 2 performs better than Plan 1. From Table 5.6 and Table 5.7, the 

average CPU time of plan 2 is better than the average CPU time of plan 1 when 

m=3, set 2 and n=40 and 50. However, these specific cases are insignificant 

because the difference between the average CPU time of plans is not remarkable. 

When we look at combinations in which n is greater than 50, the performance of 

algorithms deteriorates as the plan changes from 1 to 2, excluding the only 

combination of n=150, m=5 and set 1. To clarify, the average CPU time increases 

from 6.249 seconds to 23.147 seconds when n=200, m=5 and Set 1. In addition, the 

maximum CPU time shows the same behaviour that can be observed for the 

average CPU time. The average CPU times of the algorithm are significantly better 

for Plan 1 combinations than Plan 2 combinations, excluding the combinations of 

n=20, Set 2 and  𝑝𝑖 ~𝑈[1,100]. The reason is that lower bound 2 (𝐿𝐵2) considers 

minimizing the idle time, which is the difference between the breakdown time and 

the start time of the job that is interrupted by the breakdown. It is better to have 

more jobs that can be positioned in this idle time. The increment in the breakdown 

time from one scenario to another is determined periodically in Plan 1 (as opposed 

to being randomly determined in Plan 2), and hence is large enough to fill 

efficiently, particularly when the number of scenarios is low. When the situation is 

considered from this perspective, it becomes reasonable that combinations of Plan 

1 perform better than the combinations of Plan 2. 

There are big differences between breakdown plans in terms of number of unsolved 

instances in two hours. Below is a table that shows the total number of unsolved 

instances for 100 instances. 
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Table 5. 16 Distribution of unsolved instances to specific problem settings 

Settings 
Plan 1  

& 

m=3 

Plan 1  

& 

m=5 

Plan 2  

& 

m=3 

Plan 2  

&  

m=5 

Set 1 - 𝑝𝑖 ~[1,10]  0 0 1 6 

Set 1 - 𝑝𝑖 ~[1,100] 0 1 5 12 

Set 2 - 𝑝𝑖 ~[1,10]  0 0 0 3 

Set 2 - 𝑝𝑖 ~[1,100] 0 0 2 10 

As the results in Table 5.16 reveal, our algorithm performs well when breakdown 

times are determined periodically for both m=3 and m=5. Particularly, the effect of 

breakdown plan is observed as dramatically significant when the number of 

scenario increases. 

Another point that should be emphasized is related to the number of nodes 

generated in the algorithm. The dramatic increase in the average and maximum 

number of nodes in almost all combinations excluding the same cases that behave 

differently than general cases while discussing average CPU time is observed. For 

example, average number of nodes generated increase from 7,922 to 73,820 

between plan 1 and plan 2 when 𝑝𝑖 ~𝑈[1,10]  n=20, m=5 and Set 1. For the cases 

that involve unsolved instances, this difference becomes huge. Therefore, Plan 2 

performs worse than Plan 1 with respect to the number of nodes.  

It can be summarized that breakdown plans have significant effects on the results 

of our algorithm in terms of our performance measures and Plan 1 performs well 

with respect to Plan 2 in our algorithm. 

5.3.2.4 Effects of the Scenario Probabilities 

There are two sets for the probability of scenarios. Set 1 defines the case where all 

scenarios are equally likely to occur, and Set 2 refers to the case where the later 
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breakdowns are more likely to occur. Our results show that CPU times are slightly 

higher for Set 2 in various combinations. However, almost all increases are 

negligible. We have a similar observation for the number of nodes and for the 

number of unsolved instances. 

In the implementation of our lower bounds, each scenario is considered separately. 

A lower bound on the makespan is obtained for each scenario, and the probability 

values only affect the expected objective value. Therefore, the guidance of the 

bounds and the fathoming structure remains unchanged and the scenario 

probabilities do not have notable impact on the performance of algorithm. 

5.3.2.5 Effects of the Lower Bounds 

In this section, we discuss the effects of lower bounds on the performance of the 

proposed branch and bound algorithm.  To see the effects of the lower bounds on 

the performance of the branch and bound algorithm, we compare the algorithm that 

uses both lower bounds and report the results in Tables 5.17 and 5.18, that tabulates 

the CPU times and the number of nodes for n=10. 
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Table 5. 17 Results of Performance Measure when LBs are not used for n=10 

Job Scenario Set Plan 

CPU Time Number of Nodes 

Average Maximum Average Maximum 

Without LBs 

10 3 

1 
1 3.837 6.581 662,574 1,193,225 

2 2.811 4.727 437,691 727,092 

2 
1 2.967 3.762 678,120 919,323 

2 2.705 4.667 612,289 1,184,510 

10 5 

1 
1 5.276 7.908 862,217 1,342,271 

2 4.775 7.492 773,654 1,298,581 

2 
1 6.462 12.262 1,454,319 2,926,585 

2 4.295 10.677 908,034 2,641,093 

 

Table 5. 18 Results of Performance Measure when LBs are used for n=10 

Job Scenario Set Plan 

CPU Time Number of Nodes 

Average Maximum Average Maximum 

With LBs 

10 3 

1 
1 0.053 0.102 500 1,526 

2 0.059 0.231 1,639 8,325 

2 
1 0.132 0.174 825 1,730 

2 0.113 0.214 497 3,366 

10 5 

1 
1 0.130 0.201 1,366 2,830 

2 0.105 0.205 2,164 6,422 

2 
1 0.304 0.395 2,530 6,154 

2 0.328 0.720 3,507 12,840 
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Table 5.17 and 5.18 reveals that the number of nodes generated, and the CPU time 

improve significantly when the lower bounds are incorporated. The effect of the 

lower bounds is more significant when there are more scenarios. For example, the 

average number of nodes for m=3, Set 2 and Plan 2 is 4,967 and 612,289 when the 

lower bounds are used and they are not used, respectively. In addition to m=3, 

using the lower bounds decreases the number of nodes from 908,034 to 3,507 for 

the same combination when m=5. This strong power of the lower bounds dispels 

the exponential nature of the search. The same inferences as the number of nodes 

generated can be made for the CPU times. 

To show the effect of the stronger lower bound, i.e., 𝐿𝐵2 we design two branch and 

bound algorithms: one that uses 𝐿𝐵2 and does not use 𝐿𝐵2. Table 5.19 through 

Table 5.22 report the performance results. Tables 5.19 and 5.20 show the number 

of unsolved instances and CPU times and number of nodes respectively for 

𝑝𝑖 ~𝑈[1,10]. Tables 5.21 and 5.22 are the respective results for 𝑝𝑖 ~𝑈[1,100]. It is 

also noted that Tables 5.19 through 5.22 are for n=20. 

Table 5. 19 The number of unsolved instances when 𝑝𝑖 ~𝑈[1,10] 

Job (n) 
Scenario 

(m) 
Set Plan 

Number of Unsolved 

Instances (from 10) 

With 𝑳𝑩𝟐 W/o 𝑳𝑩𝟐 

20 

3 

1 1 0 0 

1 2 1 1 

2 1 0 0 

2 2 0 1 

5 

1 1 0 0 

1 2 0 1 

2 1 0 0 

2 2 2 2 
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Table 5. 20 The CPU times and number of nodes when 𝑝𝑖 ~𝑈[1,10] 

m Set Plan Case 
CPU Time Number of Nodes 

Average Maximum Average Maximum 

3 

1 

1 
With 𝐿𝐵2 0.033 0.042 210 211 

W/o 𝐿𝐵2 0.180 0.363 999 6,146 

2 
With 𝐿𝐵2 2.263 19.315 118,571 1,061,703 

W/o 𝐿𝐵2 3.713 31.816 328,027 2,913,640 

2 

1 
With 𝐿𝐵2 0.220 0.404 569 3,668 

W/o 𝐿𝐵2 0.407 1.470 14,605 94,026 

2 
With 𝐿𝐵2 0.407 2.483 7,686 72,036 

W/o 𝐿𝐵2 720.626 7200.000 47,065 398,560 

5 

1 

1 
With 𝐿𝐵2 0.605 3.038 7,922 39,860 

W/o 𝐿𝐵2 16.220 136.228 1,033,945 8,541,931 

2 
With 𝐿𝐵2 2.666 24.904 73,820 728,869 

W/o 𝐿𝐵2 753.219 7200.000 2,534,953 20,599,538 

2 

1 
With 𝐿𝐵2 0.534 3.072 5,806 48,618 

W/o 𝐿𝐵2 2.151 10.613 147,883 849,672 

2 
With 𝐿𝐵2 3.949 13.444 65,725 296,081 

W/o 𝐿𝐵2 4.513 16.039 225,608 863,181 
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Table 5. 21 The number of unsolved instances when 𝑝𝑖 ~𝑈[1,100] 

Job (n) 
Scenario 

(m) 
Set Plan 

Number of Unsolved 

Instances (from 10) 

With 𝑳𝑩𝟐 W/o 𝑳𝑩𝟐 

20 

3 

1 1 0 0 

1 2 0 0 

2 1 0 0 

2 2 0 0 

5 

1 1 0 0 

1 2 3 5 

2 1 0 2 

2 2 1 1 

 

Table 5. 22 The CPU times and number of nodes when 𝑝𝑖 ~𝑈[1,100] 

m Set Plan Case 
CPU Time Number of Nodes 

Average Maximum Average  Maximum 

3 

1 

1 
With 𝐿𝐵2 0.048 0.072 339 676 

W/o 𝐿𝐵2 0.567 1.994 23,327 105,171 

2 
With 𝐿𝐵2 0.068 0.154 612 2,806 

W/o 𝐿𝐵2 7.870 66.669 760,375 6,664,623 

2 

1 
With 𝐿𝐵2 0.264 1.334 2,645 22,369 

W/o 𝐿𝐵2 1.674 8.855 70,113 520,678 

2 
With 𝐿𝐵2 0.149 0.199 288 559 

W/o 𝐿𝐵2 0.334 0.529 3,705 8,961 

5 

1 

1 
With 𝐿𝐵2 29.001 216.975 648,147 5,040,425 

W/o 𝐿𝐵2 377.049 3121.483 15,746,473 113,678,551 

2 
With 𝐿𝐵2 268.532 1677.877 1,064,552 5,130,422 

W/o 𝐿𝐵2 2100.014 7200.000 2,539,918 11,584,163 

2 

1 
With 𝐿𝐵2 834.931 4876.442 10,138,230 54,407,771 

W/o 𝐿𝐵2 1577.367 7200.000 10,521,848 52,246,240 

2 
With 𝐿𝐵2 11.668 64.020 304,592 1,918,892 

W/o 𝐿𝐵2 135.151 836.731 9,997,262 57,940,943 
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Note from Table 5.19 that the number of unsolved instances reduces from 5 to 3 

with the use of 𝐿𝐵2 when 𝑝𝑖 ~𝑈[1,10]. Table 5.20 indicates that the number of 

nodes and the CPU times reduce drastically with the use of 𝐿𝐵2 when 𝑝𝑖 ~𝑈[1,10] 

For example, 𝐿𝐵2 reduces the CPU times from 16.220 seconds to 0.605 seconds 

when m is equal to 5 for set 1 and plan 1. Meanwhile, average number of nodes 

decreases from 1,033,945 to 7,922 with the contribution of 𝐿𝐵2 for the same 

combinations stated previously. 

The similar results hold for 𝑝𝑖 ~𝑈[1,100] . Table 5.21 reveals that 𝐿𝐵2 reduces the 

number of unsolved instances from 8 to 5. With Table 5.22, it is obvious that the 

CPU times and the number of nodes reduce significantly when 𝐿𝐵2 is used. For set 

1 and plan 1, the average CPU times reduce from 0.567 to 0.048 seconds when 

there are 3 scenarios and from 377.049 to 29.001 seconds when there are 5 

scenarios. Moreover, average number of nodes decreases from 23,327 to 339 for 

m=3 and 15,746,473 to 648,147 with the contribution of 𝐿𝐵2 for the same 

combinations stated previously. 

The significant contribution of 𝐿𝐵2 is due to the difference between 𝐿𝐵1 and 𝐿𝐵2 in 

terms of handling the unsequenced jobs. In 𝐿𝐵1, the sum of processing times of 

unsequenced jobs are included in the bound without considering the breakdown 

structure. In 𝐿𝐵2, on the other hand, the breakdown structure is considered when 

computing the upper bound on the number of jobs that can be processed before the 

breakdown, which is then used in computing the lower bound on the makespan. 

Thus, solution found at the early levels of branching are close to the optimal 

expected makespan.  

5.3.2.6 Performance of the First Feasible Solution found by the BAB 

We finally investigate the performance of the first feasible solution found by the 

B&B. We select 60 instances as follows. 
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Table 5. 23 Number of instances (first feasible solution = optimal solution) for 

different problem settings 

Number of Jobs Problem Settings 
Number of Instances (First Feasible 

Solution = Optimal Solution) 

100 

Set 1 – Plan 1 0 

Set 1 – Plan 2 0 

Set 2 – Plan 1 0 

Set 2 – Plan 2 1* 

150 

Set 1 – Plan 1 0 

Set 1 – Plan 2 0 

Set 2 – Plan 1 0 

Set 2 – Plan 2 1 

200 

Set 1 – Plan 1 0 

Set 1 – Plan 2 1 

Set 2 – Plan 1 0 

Set 2 – Plan 2 0* 

*There is 1 unsolved instance out of 5 instances in this problem setting. 

 

Table 5. 24 Deviations for instances that first feasible solution is not equal to 

optimal solution 

Instances Objective Value of the 

First Feasible Solution 

(OVFFS) (seconds) 

Optimal 

Objective Value 

(OOV) (seconds) 

Deviations 

((OVFFS – 

OOV) / OOV) 

Instance 1 5215.8 5214.0 0.030 % 

Instance 2 7925.4 7925.0 0.005 % 

Instance 3 9546.8 9540.0 0.070 % 
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We find that 58 out of 60 instances could be solved in our termination limit of 2 

hours. The results have revealed that in 55 out of 58 instances, the first feasible 

solution turned out to be optimal. For the other 3 solved instances, the deviations of 

the objective value of the first feasible solution from the optimal objective value 

are 0.03%, 0.005% and 0.07%, i.e., the deviations are negligible. 

5.3.3 Expected Value Problem and the Value of the Stochastic Solution  

In this section, we first report and discuss the VSS = EEV – SP values based on the 

smallest-sized problem instances (n = 10), where SP values are obtained by solving 

the SP model.  

Table 5. 25 VSS values when 𝑝𝑖~𝑈[1,100] for n=10 

n m 
Probability 

(1=Equal, 2=Later) 

EEV-SP 

Average Maximum 

10 

3 
1 13.400 22.001 

2 14.864 24.003 

5 
1 19.740 33.400 

2 14.747 22.883 

 

Note from Table 5.25 that average EEV-SP values are between 13.400 and 19.740 

for different combinations. Hence, when there are 10 jobs, the improvement in the 

expected makespan value is 15.68 on average, which indicates the benefit of using 

a stochastic program instead of a deterministic approach. 

VSS values are calculated by taking an average of the 5 instances for the larger-

sized problem instances (n = 50 and n = 100) and are reported in Tables 5.26 and 

5.27. Note that, SP values are obtained by using the proposed B&B algorithm for 

these instances. For EVP values, we utilize the same approach used for the smaller-

sized instances, which is described in Part 3.5. Remember that we can further 

simplify the EVP by eliminating the sequencing decisions, and this would result in 
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a knapsack problem. After determining which jobs are processed before the 

expected breakdown by solving this model, SPT is used to sequence the jobs in 

each group, and the expected makespan is computed for the generated sequence.  

Table 5. 26 VSS values for n=50, m=5 and 𝑝𝑖 ~𝑈[1,100]  

Problem Settings 

Average value of VSS 

 (𝑽𝑺𝑺 =  𝒛𝑬𝑬𝑽 − 𝒛𝑺𝑷
∗ ) 

(seconds) 

Set 1 - Plan 1 12.76  

Set 1 - Plan 2 22.12 

Set 2 - Plan 1 22.31 

Set 2 - Plan 2 21.60 

 

Table 5. 27 VSS values for n=100, m=5 and 𝑝𝑖 ~𝑈[1,100] 

Problem Settings 

Average value of VSS 

 (𝑽𝑺𝑺 =  𝒛𝑬𝑬𝑽 − 𝒛𝑺𝑷
∗ ) 

(seconds) 

Set 1 - Plan 1 21.20 

Set 1 - Plan 2 23.84 

Set 2 - Plan 1 23.56 

Set 2 - Plan 2* 34.88 

* 4 instances are considered as one instance is not solved in the termination limit. 

VSS represents the expected improvement in the objective function as a result of 

solving the stochastic model (using the B&B algorithm) instead of a deterministic 

model, the knapsack model for this case. Improvement values range between 12.76 

and 22.31 for n=50 and between 21.20 and 34.88 for n=100. It can be concluded 

that the value of solving a stochastic model rather than a deterministic one becomes 

higher as the number of jobs (n) increases. 
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Table 5. 28 VSS values for n=50, m=3 and 𝑝𝑖 ~𝑈[1,100] 

Problem Settings 

Average value of VSS 

 (𝑽𝑺𝑺 =  𝒛𝑬𝑬𝑽 − 𝒛𝑺𝑷
∗ ) 

(seconds) 

Set 1 - Plan 1 6.47 

Set 1 - Plan 2 21.06 

Set 2 - Plan 1 20.06 

Set 2 - Plan 2 20.07 

 

We also investigated the effect of the number of scenarios (m) on the VSS values. 

We report the VSS values for n = 50 and 𝑚 = 3 (i.e., for a smaller number of 

scenarios) in Table 5.28.  When the values in Tables 5.26 and 5.28 are compared, it 

is observed that VSS is higher when more scenarios are used to capture the 

uncertainty. 

Table 5. 29 VSS values for n=50, m=5 and 𝑝𝑖 ~𝑈[1,10] 

Problem Settings 

Average value of VSS 

 (𝑽𝑺𝑺 =  𝒛𝑬𝑬𝑽 − 𝒛𝑺𝑷
∗ ) 

(seconds) 

Set 1 - Plan 1 1.60 

Set 1 - Plan 2 2.28 

Set 2 - Plan 1 2.43 

Set 2 - Plan 2 2.07 

 

To observe the effect of processing times on the VSS values, we executed 

experiments for n=50, m=5 and 𝑝𝑖 ~𝑈[1,10]. We report the VSS values for this set 

of experiments in Table 5.29. From the comparison of the values in Tables 5.26 

and 5.29, we can conclude that the instances with  𝑝𝑖 ~𝑈[1,10] produce very close 
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values for different job sequences due to the similarity of the processing times. 

Therefore, the VSS values are higher for 𝑝𝑖 ~𝑈[1,100] setting. 
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CHAPTER 6  

6 CONCLUSION  

In this study, we consider a single machine scheduling problem with random 

breakdowns. We assume that there is a single breakdown with an unknown 

occurrence time. The occurrence times are stochastically known with probabilities. 

Each occurrence time is referred to as a scenario. We aim to find a sequence of jobs 

to maximize the expected makespan. We propose two stochastic programming 

models one of which takes precedence over the jobs and the other takes the job 

position as the main decision. 

To assess the value of using a stochastic programming approach, we find the 

expected value solution and evaluate its expected makespan value. The expected 

value solution is found through a single knapsack model. We observe that there is 

difference between the optimal objective function value of a stochastic program 

and the expected makespan of the expected solution, which justifies the use of a 

stochastic program. 

Our experiments have revealed that the precedence based model performs superior 

to the position model, and it can solve instances with up to 10 jobs. 

To handle the medium to large sized problem instances, we propose a branch and 

bound algorithm. We provide an efficient branching scheme that avoids the 

repetition of many partial solutions. We improve the performance of the branch and 

bound algorithm with two powerful lower bounding approaches. Our lower bounds 

find a lower bound for each scenario realization and weigh the scenario lower 

bounds by their occurrence probabilities. 
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Our extensive computational results with up to 200 jobs and 5 scenarios have 

revealed the satisfactory behavior of the branch and bound algorithm. We observe a 

more dominant effect of the number of scenarios than the number of jobs, since its 

impact is not only on the problem size but also on the length of the period before 

the breakdown. The exponential nature of the search is dispelled significantly 

through our efficient branching scheme and lower bounding schemes.  Most of the 

instances would remain unsolved for two hours in the absence of those 

mechanisms. We observe the significance of the maintenance patterns and 

processing time distributions on the performance of the algorithm. The instances 

with periodic maintenance and low processing time variability are the easiest to 

solve.   

To the best of our knowledge, we propose the first stochastic programming 

approach to a single machine problem with uncertain breakdown times.   We hope 

that our promising results may trigger developments in the stochastic scheduling 

area. Future research may consider the development of B&B based heuristic 

approaches like filtered beam search algorithm that uses our branching scheme and 

lower bounds. An extension of our study to more complex objective functions like 

total flow time and total tardiness is another fruitful research area. Moreover, more 

complex breakdown structures, like multiple breakdowns, are worth-studying. 
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